Pharmaceutical Sciences and Drug Design

ISSN: 3062-4428 C9 Gala{(y .
2023, Volume 3, Page No: 329-346 Publication

Copyright CC BY-NC-SA 4.0
Available online at: www.galaxypub.co/page/journals

Galaxy Publication

Computational Exploration of IP6K1 Inhibition: Ligand- and Structure-Based Insights
for Obesity-Related Therapeutics

Kevin O’Donnell’, Rachel S. Murphy?**, Brian Nolan'

'Department of Medicinal Chemistry, School of Pharmacy, Trinity College Dublin, Dublin, Ireland.
2Department of Pharmaceutical Sciences, School of Pharmacy, University of Arizona, Tucson, United States.

*E-mail D4 rachel.murphy@outlook.com
Received: 16August 2023; Revised: 29 November 2023; Accepted: 01 December 2023

ABSTRACT

Current investigations have revealed an encouraging method for managing the increasing worldwide challenge of
obesity and its comorbid conditions. Targeting inositol hexakisphosphate kinase 1 (IP6K1) through inhibition has
surfaced as a viable treatment avenue. The present work applies diverse ligand-based computational modeling
approaches to examine the key structural elements needed for benzisoxazole compounds to inhibit IP6K1
effectively. Initially, we generated linear 2D Quantitative Structure—Activity Relationship (2D-QSAR) models to
balance explanatory clarity with robust forecasting capability. Subsequently, pharmacophore modeling from
ligands was carried out to detect the critical chemical features driving the high potency of these molecules. To
elucidate the three-dimensional aspects required for greater efficacy toward the IP6K1 target, various alignment
strategies were used to build 3D-QSAR models. Because no experimental X-ray structure exists for [P6K1, a
dependable homology model was constructed and thoroughly verified structurally, allowing structure-based
studies on the chosen compound set. In addition, molecular dynamics simulations employing the docked
configurations of these molecules yielded deeper understanding. The outcomes uniformly reinforced the
explanatory insights gained from ligand-based as well as structure-based methods. This research supplies practical
recommendations for developing new IP6K1 inhibitors. Significantly, all analyses were conducted using only
freely available, non-proprietary software, facilitating easy replication of the described models.
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Introduction

During the past forty years, obesity rates around the world have increased without pause, impacting people
regardless of age, ethnicity, or sex [1, 2]. This disturbing pattern has sparked numerous related medical problems,
among them type 2 diabetes mellitus (T2DM), high blood pressure, abnormal blood lipids, heart and vessel
diseases, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), issues with
reproduction, breathing difficulties, mental and neurological disorders, and particular types of cancer [3-5].
Positively, integrating drugs with changes in daily habits has proven effective against obesity [6, 7]. A small
weight or fat loss of just 5-10% can markedly decrease the chances of complications linked to obesity in grown-
ups [8, 9]. Nevertheless, keeping weight off over time is hard, fueling major efforts to find fresh treatment paths
for obesity and its metabolic consequences [2, 10].

Enzymes called inositol hexakisphosphate kinases (IP6Ks) are essential for adding a phosphate group to inositol
hexakisphosphate (InsP6), forming 5-diphosphoinositol pentakisphosphate (5-InsP7 or SPP-IPS, commonly IP7).
This reaction starts the production of inositol pyrophosphates (PP-InsPs). New data suggest that blocking the
pathway for making PP-InsPs could help treat metabolic issues, bone loss, blood clots, infections, cancer spread,
and problems tied to aging [11, 12]. These inositol pyrophosphates act as powerful signaling agents in eukaryotic
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cells, supporting key body functions like making ATP, releasing insulin, transmitting signals inside cells, moving
cells, fixing DNA, and keeping energy levels stable [13-15].

Out of the three chief IP6K types, IP6K1 and IP6K2 appear in most body tissues, but IP6K3 is mostly in heart,
skeletal muscle, and brain [16]. IP6K1 works in two ways: it dampens some insulin signals yet boosts insulin
release from pancreas cells. It also lowers heat production in fat cells, cutting overall energy use [17]. In mice
without IP6K 1, insulin works better and energy spending rises, shielding them from obesity caused by rich diets,
too much insulin in blood, and resistance to insulin. Less IP6K1 also helps treat NAFLD and NASH [18]. Such
results highlight IP6K 1 blockers as possible drugs for obesity and connected metabolic troubles [18-21].
Compounds with ring structures containing different atoms are often used in drug research to create new starting
molecules for important targets [22-25]. Recently, Zhou et al. described a group of benzisoxazole compounds that
block IP6K1, IP6K2, and IP6K3 to different extents [26]. Tests outside living organisms on HCT116 colon cancer
cells showed strong blockers of IP6K 1 and IP6K2 greatly cut inositol pyrophosphate amounts while leaving other
inositol phosphates mostly unchanged. One top blocker dropped those levels by 66-81% with little effect
elsewhere. Inside animals, these compounds eased obesity-linked damage and cut weight without changing how
much was eaten.

Using computers to help design drugs is now seen as vital in early discovery stages [27-31]. Here, we did thorough
computational modeling on this key compound group to find what structure parts boost blocking of IP6K1. We
noticed a solid link (R? ~ 0.85) between how well they block IP6K1 and IP6K2, meaning features for IP6K 1 likely
apply wider. Tools like 2D-QSAR, 3D-QSAR, and pharmacophore from ligands helped spot these parts. To check
our work, we matched ligand-based computer results with dynamics simulations on an IP6K1 model built from
similar proteins. This effort helps make better IP6K1 blockers and fights obesity.

Materials and Methods

Dataset collection and preparation

Structures and activity data for 36 IP6K 1 inhibitors were obtained from the recent publication by Zhou et al. [26],
where IC50 values against IP6K1 were measured using a novel enzyme-coupled assay. These IC50 values were
converted to pIC50 (—log10(IC50/10%)) and used as the dependent variable for all ligand-based modeling. For
uniformity, the original SMILES strings provided by Zhou et al. were processed into canonical SMILES via
RDKit and then generated as 3D structures in .sdf format using Discovery Studio Visualizer. Additional
standardization of the 3D models was achieved with the Chemaxon Standardizer tool through the following
procedures: (a) addition of explicit hydrogens, (b) aromatization, (c) 2D and 3D cleaning, (d) neutralization to
achieve zero net charge, and (e) removal of any counterions.

The 2D-OSAR modeling

Descriptor calculation
Molecular descriptors were computed with the alvaDesc version 2.0.4 tool, available through the freely accessible
OCHEM online platform ([https://www.alvascience.com/alvadesc/](https://www.alvascience.com/alvadesc/))
(accessed on 7 September 2023) [32]. The 3D structures of the compounds were energy-minimized using the
Corina module integrated in the OCHEM server [33]. The complete dataset for 2D-QSAR construction was
assembled by merging these calculated descriptors with the corresponding pIC50 values of the compounds.

Dataset division and model development

The full dataset was divided into a training set (80%) and a test set (20%) employing the open-source Python
program SFS-QSAR-tool v2 ([https://github.com/ncordeirfcup/SFS-QSAR-
tool](https://github.com/ncordeirfcup/SFS-QSAR-tool), accessed on 12 September 2023) [34]. This split followed
an activity-sorted strategy with an initial offset of 2, whereby compounds were first ordered by descending pIC50
(starting from the second entry), and every fifth compound was assigned to the test set. Model building proceeded
in two phases. First, only descriptors from eight highly interpretable categories were used: molecular properties,
functional group counts, 2D atom pairs, drug-likeness indices, ring descriptors, atom-centered fragments, and
constitutional descriptors. In the second phase, the entire range of alvaDesc descriptors was included.

For the 2D-QSAR methodology, a multiple linear regression (MLR) approach was chosen. Two freely available
programs were utilized to construct the MLR models:
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(a) SFS-QSAR-tool _v2: This provides a user-friendly interface for creating linear, interpretable 2D-QSAR
models. It implements sequential forward selection (SFS), adapted from the Mixtend library code
([http://rasbt.github.io/mlxtend/](http://rasbt.github.io/mlxtend/), accessed on 12 September 2023). SFS is a
deterministic feature selection method that supports multiple scoring functions and cross-validation options to
identify the optimal descriptors. Here, four scoring functions were tested: coefficient of determination (R?),
negative mean absolute error (NMAE), negative mean Poisson deviance (NMPD), and negative mean gamma
deviance (NMGD). For each, models were built without cross-validation and with 5-fold cross-validation,
producing eight (=4 x 2) models per descriptor set.

(b) Genetic-Algorithm v.4.1 2 ([https://dtclab.webs.com/software-tools](https://dtclab.webs.com/software-
tools), accessed on 14 September 2023): This tool constructs linear interpretable MLR models via a stochastic
genetic algorithm (GA) procedure, details of which are reported elsewhere [35]. During preprocessing, correlation
and variance thresholds were set to 0.99 and 0.0001, respectively, to retain a diverse descriptor pool while
removing constant or near-identical ones.

Evaluation of the models

The performance of the 2D-QSAR models was evaluated using standard validation metrics, primarily Q*LOO
(leave-one-out cross-validated R?) and R?Pred/Q?*F1 (external predictive R?) [36, 37]. The former measures
internal robustness on the training set, while the latter gauges predictive power on the external test set. Given the
generation of multiple models per descriptor set through both stochastic and deterministic selection, these metrics
were key for identifying the best-performing model.

Further statistical indicators included R?, adjusted R* (R?adj), mean absolute error (MAE), rm?’LOO with
Arm?LOO (training set), rm*test with Arm?test (test set), Q*F2, and root mean square error of prediction (RMSEP)
[38]. Descriptor inter-correlation was checked via the cross-correlation matrix, and multicollinearity in final
models was quantified by variance inflation factor (VIF) [39]. Model robustness against chance correlation was
verified through Y-randomization, using the cRp? parameter [40]. The applicability domain (AD) of selected
models was defined via Williams plots, relating standardized residuals (for response outliers) to leverage values
(for structural outliers) [38, 41].

Ligand-based pharmacophore modeling

Structure-based pharmacophore models were generated using the open-source Quantitative Pharmacophore
Activity Relationship (QPHAR) tool recently made available [42]. For every compound, 50 conformers were
produced separately via genetic algorithm and Confab methods, powered by Open Babel software.

QPHAR models were trained after partitioning the dataset into 26 training and 10 test compounds with the
splitData.py script included in QPHAR. The underlying QPHAR methodology is thoroughly explained by
Kohlbacher ef al. [42] and in our earlier work [43]. Model training relied exclusively on the training set with the
train.py script, applying random forest (RF) regression and these settings: fuzzy: True; weight type: distance;
threshold: 1.5; number of estimators: 10; maximum depth: 3; metric: R2. Activity predictions for the test set were
obtained using the predict.py tool. Internal performance was judged by R? root mean square error (RMSE),
standard error (SE), and median error (ME), whereas external performance was evaluated solely through R?Pred.
The derived pharmacophore models also served for compound alignment. The profile3DActivity.py tool in
QPHAR was applied to produce pharmacophore-superimposed structures, which were later used for 3D-QSAR
development [44].

The 3D-OSAR modeling

For 3D-QSAR analysis, the Open3DQSAR software was utilized, incorporating two distinct variable selection
methods: (a) Fractional Factorial Design-based variable SELection (FFD-SEL) and (b) Uninformative Variable
Elimination-based Partial Least Square (UVE-PLS) [45, 46].

Model construction involved testing two alignment approaches. The first was an unsupervised rigid body
alignment procedure. Input .sdf files were first geometry-optimized via steepest descent minimization under the
MMFF94 force field. Post-optimization, 500 conformers per ligand were produced using
rdMolAlign.GetCrippenO3A in RDKit before alignment—a higher number than the typical 100, as it delivered
superior models here. A custom Python script named “alignment.py” handled the atom-based superimposition
and is hosted at the GitHub repository:
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[https://github.com/ncordeirfcup/InsilicoModeling RdRp](https://github.com/ncordeirfcup/InsilicoModeling R
dRp) (accessed on 1 October 2023).

Model performance was evaluated through metrics including R?, F-test values, leave-one-out (Q°LOO), leave-
two-out (Q*LTO), and leave-many-out (Q?LMO with 5 groups and 20 iterations) cross-validation, plus external
R?Pred. Contour maps were visualized with isocontour levels at PLS coefficients of +0.002 (green) and —0.002
(yellow) for steric fields, and +0.001 (blue) and —0.001 (red) for electrostatic fields. A comprehensive overview
of the Open3DQSAR workflow is available elsewhere [47].

Homology modeling

The IP6K1 homology model was constructed via the SWISS-MODEL server using UniProt entry Q92551
([https://www.uniprot.org/](https://www.uniprot.org/), accessed on 8 October 2023) [48]. After template
identification and multi-template modeling, structural validation was performed with the MolProbity server
([http://molprobity.biochem.duke.edu/index.php](http://molprobity.biochem.duke.edu/index.php), accessed on
10 October 2023) [49, 50], integrated within SWISS-MODEL. This evaluation pinpointed the AlphaFold structure
([https://alphafold.ebi.ac.uk/](https://alphafold.ebi.ac.uk/), accessed on 10 October 2023) as yielding the highest-
quality initial model [51, 52]. To enhance this AlphaFold-derived structure further, molecular dynamics (MD)
refinement was conducted in Amber 20 [53], adhering to the protocol outlined by Nurisso et al. [54]. The
refinement steps comprised: (i) two-phase minimization of the explicitly solvated system—first solvent/ions only,
then the full system; (ii) gradual heating under NVT conditions followed by 2 ns NPT equilibration; (iii) a 50 ns
production MD run in explicit solvent; and (iv) final minimization (5000 cycles of conjugate gradient) of the
protein alone under Generalized Born implicit solvation.

These procedures ensured a high-quality [P6K1 homology model, with post-refinement validation again
performed using MolProbity.

Molecular docking analysis

Docking was performed with the advanced CB-Dock?2 pipeline, an improved iteration of CB-Dock developed by
Yang Cao and colleagues [55, 56]. Accessible at
[http://cao.labshare.cn/clab/index.html](http://cao.labshare.cn/clab/index.html) (accessed on 12 October 2023),
CB-Dock2 excels in binding-site prediction through its CurPocket algorithm, which detects cavities based on
protein surface curvature. This proved particularly valuable for our homology model and for locating unknown
ligand pockets. The three largest CurPocket-identified cavities (by volume) were chosen for docking, which was
executed via the embedded AutoDock Vina engine [57].

Molecular dynamics simulations

The resulting docked complexes were subjected to 50 ns MD simulations following established protocols detailed
previously [58, 59]. Ligand topologies were generated in Leap (Amber 14) using the general AMBER force field
(GAFF) via Antechamber. Simulations employed the ff99SB force field with explicit TIP3P water in a cubic box
maintaining an 8 A buffer around the complex. Pressure and temperature were controlled with the Berendsen
barostat and Langevin thermostat, respectively. Protein protonation states at pH 7.0 were assigned using the
PDB2PQR server ([https://server.poissonboltzmann.org/pdb2pqr](https://server.poissonboltzmann.org/pdb2pqr),
accessed on 14 October 2023) [60]. Trajectories were processed with PTRAJ and CPPTRAJ [61], and results
visualized/plotted in QtGrace
([https://sourceforge.net/projects/qtgrace/](https://sourceforge.net/projects/qtgrace/), accessed on 25 October
2023). Hydrogen-bond occupancy between ligands and receptor residues was quantified from trajectories.
Enthalpic binding free energies were computed via MM-GBSA using MMPBSA.py in AMBER [62]. Entropy
terms (TAS) were estimated through normal-mode analysis on 100 frames sampled from the final 10 ns, employing
a quasi-harmonic approach based on the covariance matrix of atomic fluctuations. Per-residue energy
decomposition was also performed with the Amber MM-GBSA module to dissect contributions from binding-site
residues [58, 62]. All energy terms—van der Waals, electrostatic, polar solvation, and non-polar solvation—were
derived from 200 snapshots taken from the last 10 ns. These analyses yielded essential details on ligand-receptor
contacts and complex stability.

Finally, the ADMET (adsorption, distribution, metabolism, excretion, and toxicity) properties of the three top-
performing compounds (namely, 21, 15, and 20) were assessed via the admetSAR-2.0 online tool
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([http://lmmd.ecust.edu.cn/admetsar2](http://lmmd.ecust.edu.cn/admetsar2), accessed on 06 January 2026) [63].
Owing to their close structural resemblance, the three molecules showed similar ADMET characteristics. Each
exhibited low acute oral toxicity (category III: LD50 > 500 mg/kg but < 5000 mg/kg), moderate-to-low aqueous
solubility, and positive profiles for human oral bioavailability and intestinal absorption. Additionally, all
demonstrated blood—brain barrier (BBB) penetration, as evidenced by the BOILED-Egg diagram, computed with
the SwissADME platform ([http://www.swissadme.ch/](http://www.swissadme.ch/), accessed on 06 January
2026) [64]. Predictions indicated potential hepatotoxicity, reproductive toxicity, myopathy (as OATP1BI1
inhibitors), and respiratory toxicity for these molecules. In contrast, no evidence emerged for carcinogenicity,
mutagenicity (Ames test), cardiac toxicity (hERG inhibition), nephrotoxicity, or skin sensitization.

Results and Discussion

The 2D-OSAR modeling

As per the plan in Materials and Methods, we started by finding top straight-line models connecting blocking
strength to alvaDesc calculations, using sequential forward selection (SFS) and genetic algorithm (GA) to pick
features. At first, multiple linear regression (MLR) 2D-QSAR setups used easy-to-understand alvaDesc items.
Then, every descriptor was added to see if forecasting got better. All key findings appear in Table 1, covering
models (M01-MO09) from clear descriptors and (M10-M18) from the full set.

Table 1. Summary of the statistical results obtained for the MLR models based on different types of descriptors

a.
Model Evaluation Cv Interpretable Model All
ID Metric Setting Descriptors ID Descriptors

Q*LOO RePred  Mcan QLOO  RePred ican

Value Value

Mo1 R? None 0.733 0.427 0.580 M10 0.812 0.688  0.750
Mo02 NMAE None 0.654 0.799 0.727 Ml11 0.820 0.868  0.844
Mo03 NMPD None 0.733 0.427 0.580 MI12 0.812 0.688  0.750
Mo04 NMGD None 0.427 0.427 0.427 M13 0.829 0.405  0.617
MO5 R? 5 0.671 0.680 0.676 M14 0.704 0.526  0.615
Mo06 NMAE 5 0.662 0.253 0.458 MI5 0.839 0.870  0.855
MO07 NMPD 5 —0.898 0.605  —0.147 M16 0.823 0.849  0.836
Mo8 NMGD 5 —0.898 0.605 —-0.147 M17 0.823 0.849  0.836
M09 GA-LDA NA 0.800 0.785 0.793 MI8 0.840 0.801  0.821

a The best models found are depicted in bold. b Scoring function used in SFS-based feature selection. ¢ Cross-validation used in the SFS-
based feature selection. d Descriptors belonging to the eight specific categories, as outlined in the Materials and Methods section.

As evident, the genetic algorithm (GA) produced the most predictive MLR model among those using interpretable
descriptors, whereas the sequential forward selection (SFS) algorithm, employing the NMAE scoring function
with five-fold cross-validation, generated the most robust MLR model when incorporating all descriptors. A
comparison of models M09 (based on interpretable descriptors) and M15 (based on all descriptors) demonstrated
a marked enhancement in predictive performance with the inclusion of the full descriptor set. Nevertheless, model
M09 exhibited acceptable predictive capability, particularly given the small number of descriptors involved.
Furthermore, models M10-M 18 were predominantly composed of 2D and 3D topological descriptors. Thus, both
M09 and M15 warrant consideration: the former facilitates interpretation of structural requirements, while the
latter offers superior predictivity and identifies descriptors that more precisely capture those requirements.
Detailed statistical parameters for M09 and M15 are provided in Table 2.

Table 2. Statistical results for the best 2D-QSAR models found, M09 and M15.
Equation Statistical Results

Model M09 (Interpretable descriptors)
pICso = +0.169(x0.028) F04[C-C] —0.447(+0.139) CMC-50
—0.378(£0.131) nRCONHR -0.275(x0.029) H-047
+0.1(£0.031) CATS2D_01_LL + 5.125(%0.485)

Niraining = 29, R? = 0.857, R2%qj = 0.826, Qoo = 0.800,
MAE = 0.201, rm?L00 = 0.724, Arm?Lo0 = 0.088
Niest = 7, R2%prea/Q%r1 = 0.785, Q%2 = 0.765,
RMSEP = 0.309, rm2test = 0.706, Armest = 0.125
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Model M15 (All descriptors)

ICso = +0.223(0.083) VE3sign_B(s) +3.079(0.574
priso ( ) VE3sign_B(S) ( ) Niraining = 29, R2 = 0.890, Ruqj = 0.866, Q%00 = 0.839,

MATS4m
MAE = 0.181, rm’co0 = 0.772, Arm*Loo = 0.117
+10.797(x1.593) SpMax2 Bh(v) —6.694(=1.071 ¢ ’
( ) (‘;’ﬁ ax2_Bh(v) ( ) Niest = 7, R%prea/ Q%1 = 0.870, Q%2 = 0.858,

RMSEP = 0.240, tn2iest = 0.740, Atm?est = 0.120
+10.984(23.07) R5¢+ —33.064(:6.179) S > Tmtest = 0.740, Atm’res

Notably, model development initially incorporated five descriptors, given the training set of 29 compounds,
thereby adhering to the recommended 1:5 ratio of independent variables to training samples. To evaluate whether
fewer descriptors could yield a statistically sound model, a 5% improvement threshold was applied via the SFS-
QSAR-tool v2, where a new descriptor was added only if it increased Q*LOO by at least 5%. For both M09 and
M15, exactly five descriptors were retained, confirming the necessity of this number.

Plots of observed versus predicted activity for M09 and M 15 are presented in Figure 1. In addition to Q*LOO and
R?Pred, other internal and external validation metrics were satisfactory (e.g., MAE: 0.201 for M09, 0.181 for
M15). Key assumptions for linear regression were also fulfilled, including low inter-descriptor correlation
(maximum R: 0.469 and 0.404). Variance inflation factor (VIF) values were all below 2.0, ruling out
multicollinearity. Moreover, cRp? values of 0.761 for M09 and 0.794 for M15 affirmed that both models were
robust and not derived by chance.
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Figure 1. Observed vs. predicted activity plots for models M09 (a) and M15 (b), along with their
corresponding Williams plots: M09 (¢) and M15 (d).

The Williams plots in Figure 1 further illustrate the applicability domain of these optimal 2D-QSAR models,
revealing no structural or response outliers in either case. The relative importance of descriptors, based on
standardized coefficients, is depicted in Figure 2.
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Figure 2. Relative significance of the descriptors of models M09 (left) and M15 (right).

Attention is first directed to the descriptors comprising model M09. The dominant descriptor is CMC-50, a drug-
likeness index corresponding to the Ghose—Viswanadhan—Wendoloski Comprehensive Medicinal Chemistry
(CMC) drug-like score at 50%. Its negative coefficient indicates that lower CMC-50 values favor greater
biological activity. CMC-50 is a binary descriptor determined by ALOGP (Ghose—Crippen octanol-water
partition coefficient), AMR (Ghose—Crippen molar refractivity), MW (molecular weight), and nAT (number of
atoms). Values of 1 are assigned when ALOGP falls between 1.3 and 4.1, AMR between 70 and 110, MW between
230 and 390, and nAT between 30 and 55; otherwise, it is 0 (Figure 3). Closer examination shows that most high-
activity compounds have low CMC-50 values. In particular, elevated lipophilicity (higher ALOGP) appears to be
the primary driver, implying that hydrophobic interactions substantially influence the inhibitory potency of these
compounds.

% .
O O Y/
15 Y 20 a
plC,, = 7.569 > pICy, = 7.244 piC, = 7.108
CMC-50 = 0, ALOGP = 5.021 CMC-50 = 0, ALOGP = 4.554 CMC-50 =0, ALOGP = 5,313

pIC,, = 5.250 pIC,, = 4.692 pIC,, = 4.530
CMC-50 = 1, ALOGP = 3.754 CMC-50 = 1, ALOGP = 3.107 CMC-50 = 1, ALOGP = 3.313

Figure 3. Typical examples highlighting the importance of the CMC-50 descriptor to the inhibitory activity.

The second most important descriptor in M09 is nRCONHR, the count of secondary amides (aliphatic). Its
negative coefficient suggests that a higher count correlates with reduced activity. The third key descriptor, H-047
(hydrogens attached to C'(sp*)/C°(sp?), where C' denotes sp® carbon without heteroatom attachment and C°
denotes sp? carbon without heteroatom attachment), is elevated in lower-activity compounds (Figure 4). This
pattern arises mainly from amide or ester side chains and unsubstituted phenyl rings in less active molecules.
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pICy, = 5.250, H-047 = 13 plCy, = 4.692, H-047 = 13 piC,, = 4.530, H-047 = 16
Figure 4. Typical examples highlighting the importance of the H-047 descriptor to the inhibitory activity.

15, piCs, = 7.569 20, piCs, = 7.244 38, piCyy = 7.001
FO4[C-C] = 26, CATS20_01_LL = 19 FO4[C-C] = 22, CATS2D_01_LL=17  FO4[C-C] = 23, CATS20_01_LL=17

9, pICy, = 5.250 11, pIC,, = 4.692 10, pIC,, = 4.530
FO4[C-C] = 17, CATS2D_01_LL = 12 FO4[C-C] =17, CATS2D0_01_LL =12 FO4[C-C] = 18, CATS2D_01_LL=12
Figure 5. Typical examples illustrating the role of both FO4[C-C] and CATS2D 01 LL descriptors in
inhibitory activity.

Shifting focus to the descriptors within model M 15, Table 3 provides explanations for these terms. Notably, every
descriptor in this model consists of intricate graph-derived topological indices. The descriptors R5e+ and G3i fall
under 3D descriptors, with their magnitudes influenced by the precise 3D geometry of the molecules. The others
qualify as 2D descriptors. The exceptional statistical predictivity of this model underscores that the exact
topological arrangement of the molecules critically governs their biological potency. Nonetheless, the top two
descriptors, R5e+ and SpMax2 Bh(v), exhibit nearly equivalent relative importance. These are respectively
weighted by electronegativity and van der Waals volume. Hence, this points to the involvement of the molecules'
3D shape, alongside electrostatic and hydrophobic forces, in elevating biological activity. The third leading
descriptor links to ionization potential, tied to molecular polarity, while MATS4m relates to atomic mass. In
summary, M09 primarily emphasizes hydrophobicity's role in boosting activity, whereas M 15's descriptors reveal
the need for equilibrium between hydrophobic/steric and electrostatic forces for optimal activity.

Table 3. The five descriptors present in the 2D-QSAR model M15.
Descriptor Reworded Description Descriptor Class
Maximum autocorrelation at lag 5 calculated using Sanderson

RSe+ GETAWAY

electronegativity weighting

Second highest eigenvalue derived from the Burden matrix, weighted by van

SpMax2 Bh
pMax2_Bh(v) der Waals volume

Burden eigenvalues

e
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WHIM symmetry index (third directional component) computed with
ionization potential weighting

MATS4m Moran index autocorrelation at lag 4, weighted according to atomic mass 2D autocorrelations

Logarithmic sum of coefficients from the final Burden matrix eigenvector,
weighted by intrinsic state (I-State)

G3i WHIM

VE3sign_B(s) 2D matrix-based

Ligand-based pharmacophore mapping

Following the elucidation of structural needs via 2D-QSAR, ligand-based pharmacophore mapping was applied
to create predictive models and discern pharmacophore elements linked to superior potency versus IP6K1. The
QPHAR software generated these ligand-based pharmacophore models, splitting the dataset into 70% training and
30% test portions. Conformers produced by the genetic algorithm outperformed those from Confab in model
quality. Statistical outcomes for the top pharmacophore model appear in Table 4.

Table 4. Statistical results for the best QPHAR-based pharmacophore model found.

Parameter Training Test
N 26 10
R? 0.845
RMSE 0.309
ME 0.248
SE 0.183
R2pred 0.565
R2pred® 0.716

a After removal of one outlier.

This model showed solid internal predictivity, with R? of 0.845 and RMSE of 0.309. External validation yielded
R?Pred exceeding the 0.50 threshold, rising to 0.716 after excluding one compound. QPHAR notably picks the
dataset's most rigid molecule as the template.

The template pharmacophore, aligned to compound 17, appears in Figure 6, including the pharmacophore
container and final quantitative pharmacophore (hpmodel). Pharmacophore alignments for three compounds (21,
35, and 10) of varying activities are also shown.

Alignment
) Pharmacophore container

Clustering + Post-processing %0 Quantitative
pharmacophore
a)
™ O w»c 4530 ax
AR AR AR served piCy, =
e Predicted piC,, = 4.879

AR

AR

21 35 AR
" Observed piC,, = 7.585 oA Sbscrvcd piC,, = 6.583 oA
WA Predicted piCy, » 7.361 recicted pIC,, » 6563
b) <) d)

Figure 6. (a) Pharmacophore features of the template molecule alongside the generated quantitative
pharmacophore. The pharmacophore-aligned structures of compounds 21 (b), 35 (¢), and 10 (d), along with
the pharmacophore features, are also displayed.
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Of these, compound 21 displays highest potency (pIC50 = 7.585), 10 the lowest (pIC50 = 4.530), and 35
intermediate (pIC50 = 6.553). The QPHAR model precisely forecasted their IP6K1 potencies. Hydrophobic and
aromatic ring features declined progressively with falling affinity, while hydrogen bond acceptor features stayed
fixed at two across all. These align with 2D-QSAR results, indicating hydrophobic contacts' key part in IP6K1
binding. Yet, the full QSAR model (M15), incorporating 2D/3D descriptors, suggested polar contacts' importance
too. Compound 21 has four aromatic ring (AR) features, 35 three, and 10 two. Both 21 and 10 match two
hydrophobic features; 35 matches three. Versus 10, 35 adds two key features—one AR and one hydrophobic—
potentially accounting for their activity gap.

The 3D-QSAR analysis

For deeper understanding of potency requirements against IP6K1, 3D-QSAR analysis was conducted with open-
source Open3DQSAR, adhering to prior alignment methods and feature selection. Rigid body alignment produced
stronger, more predictive statistics, as in Table 5. The vital alignment process is shown visually in Figure 6.

Table 5. Statistical results of 3D-QSAR models using different feature selection techniques a.

Parameter ® FFD-SEL UVE-PLS

Nitraining 29 29
NCP 4 3

R2 (SDEC) 0.912 (0.176) 0.856 (0.224)

F 62.157 33.847

Q?*Loo (SDEP) 0.637 (0.357) 0.370 (0.471)

Q%to (SDEP) 0.626 (0.363) 0.361 (0.474)

Q%mo (SDEP) 0.573 (0.387) 0.311 (0.492)
Nitest 7 7

RZprea (SDEP) 0.747 (0.564) 0.668 (0.646)
Q% 0.428

a FFD-SEL: Fractional Factorial Design-based variable SELection; UVE-PLS: Uninformative Variable Elimination-based Partial Least
Square. b NC: Number of principal components; SDEC: Standard error of calculation; SDEP: Standard error of prediction.

Evidently, FFD-SEL proved highly effective, delivering strong internal/external predictivity: Q*LOO of 0.637
and R?Pred of 0.747. Amid 3D-QSAR's sensitivity—particularly for small datasets—this model maintains steady
moderate-to-good predictivity. Its distinction lies in inherent robustness, shown by sharp cross-validation decline
after response scrambling.

Figure 7 presents contour maps from FFD-SEL, for compounds 25, 31, and 10. These depict steric/electrostatic
influences, with steric at 60% and electrostatic at 40%. Contours show two main zones: right side blends
steric/electrostatic; left side steric only. Right-side contours prove pivotal for potency.

.\:\‘t,l “ 4 -
\ -
= { I~ 44 / £
L. =y N
\ y \ ‘
U ¥
N\ k P
8 - 21
Observed piC,, : 7.585 | Pyridine ring s close
Predicted pIC, : 7.095 to electronegative and
steric favorable fields
a) b)
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\) Dimethylamine close
35 to steric unfavorable field 10

Observed pIC,, : 6,553
" Predicted pIC,, : 6.576

Observed plCy, : 4.530
Methyl ring is close Predicted piC,, : 5.169
to steric favorable field

c) d)
Figure 7. (a) Aligned structures for the dataset compounds. Contour maps obtained using the best 3D-QSAR
model for compounds (b) 21, (c) 35, and (d) 10. The color codes used range from green (steric favorable) to
red (electrostatic favorable).

For potent compound 21, favorable steric/electronegative regions near its pyridine imply dual
hydrophobic/electrostatic receptor engagement. Intermediate 35 misses some electronegative contour but gains
via methyl in hydrophobic zone. Least active 10 evades both, its dimethylamine side chain hitting steric
unfavorable area. Strikingly, no contours appear near benzisoxazole rings, confirming rigid body alignment
success.

Homology modeling of IP6K1 and MD simulations

As of now, no experimentally determined X-ray structure exists for IP6K1. For this reason, all structure-based
work had to rely on a computed homology model. In this study, the model was built using the UniProt accession
Q92551 through the SWISS-MODEL server. Five high-ranking templates based on GMQE (Global Model
Quality Estimation) scores were considered, and the AlphaFold DB structure—with a MolProbity score of 1.70—
stood out as the best, outperforming alternatives that scored above 2.0. That said, the starting AlphaFold model
still needed optimization, given its clash score of 0.58 and Ramachandran statistics of 86.10% favored and 4.10%
outliers. Refinement was achieved by running molecular dynamics (MD) simulations on the initial model,
producing a final version with a much improved MolProbity score of 0.79. This polished model showed 95.90%
Ramachandran favored residues and zero outliers. The optimized homology model was then used for all
subsequent docking and MD studies.

Despite the structural improvements, pinpointing credible ligand-binding pockets in IP6K1 proved challenging.
To tackle this, binding-site detection was performed with the CB-Dock?2 online tool, followed by docking of the
compounds into the three highest-scoring cavities using AutoDock Vina. Strikingly, the strongest and weakest
inhibitors both preferred the same pocket (centered at X =63 A, Y =77 A, Z=40 A, volume 801 A%) and achieved
the best Vina docking scores. Each complex was then subjected to 50 ns of explicit-solvent MD simulation to
explore its dynamic properties. Attention was first paid to whether the ligands remained stably bound in the
predicted site. Ligand RMSD trajectories (Figure 8) indicate that the more potent compound 21 initially moved
away from its docking pose but settled into a stable position after approximately 15 ns. The weaker compound 10
similarly drifted early in the simulation and only partially stabilized around 30 ns, yet showed greater overall
mobility than compound 21. Corresponding protein RMSF analysis revealed considerably larger fluctuations in
the segment comprising residues 125—-180 when bound to compound 10 compared to compound 21.
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Figure 8. Ligand RMSD trajectories (a) and protein RMSF profiles (b) for the potent compound 21 and the
weaker compound 10.

Binding free energies were subsequently estimated via MM-GBSA calculations on the MD frames to quantify
enthalpic contributions. Data presented in Table 6 clearly show that compound 21 enjoys a far more favorable
predicted binding energy than compound 10, driven mainly by markedly stronger electrostatic terms. Both polar
and non-polar contact energies were superior for compound 21. While compound 10 gained some advantage from
a lower solvation penalty—Ilikely owing to its compact size—its substantially weaker residue interactions
ultimately led to poorer overall affinity.

Table 6. Calculated binding free energies [AGbind(T)] for selected IP6K1 complexes a. All the components
shown are in kcal/mol.

Complexes AEvaw AEelee AGgas AGpolar AGnon—polar AGsolvation TAS AGbind(T)
21 —42.45 —125.22 —167.67 +133.91 -5.78 +128.13 —21.20 —18.35
10 —38.26 —5.73 —43.99 +18.32 —4.25 +14.07 —24.26 —5.67

a AGbind(T): theoretical binding free energy (AGbind(T) = AEvdW + AEelec + AGpolar + AGnon-polar — TAS) and its components, namely
AEvdW: van der Waals interaction energy; AEelec: electrostatic interaction energy; AGpolar: polar solvation free energy; AGnon-polar: non-

polar solvation free energy, TAS: entropy.

Representative structures averaged over the last 10 ns of each trajectory are displayed in Figure 9. The more
active compound 21 forms substantially more contacts with pocket residues than compound 10, with the extra
interactions predominantly hydrophobic in character. A prominent polar contact is also visible between the
carboxylate of compound 21 and Argl194. This same carboxylate engages firmly with both GIn190 and Arg194,
playing a central role in anchoring the ligand securely.
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Figure 9. Final binding modes of compounds 21 (a) and 10 (b) in the IP6K1 complexes as obtained from the
MD simulations.

Conversely, the benzisoxazole ring in the weaker compound 10 established hydrogen bonds with Ser53 and
Aspl106. These contacts were also highlighted by the pharmacophore model. In line with the pharmacophore
findings, all three aromatic groups in compound 21 (comprising one phenyl and one benzisoxazole) participated
in m—m or m—amide stacking with Thr108 and Tyr205, whereas only a single aromatic group in compound 10
formed such a contact with Tyr205. Notably, the polar side chain of compound 10 extended toward the solvent
and contributed fewer interactions, while the hydrophobic portions of compound 21 formed extensively more
contacts with surrounding residues. These patterns align with the 2D-QSAR results, where descriptors such as
CMC-50 and SpMax2 Bh(v) ranked highest in importance, and with the 3D-QSAR outcomes, where the side
chain of compound 10 occupied a sterically unfavorable region.

The 3D-QSAR analysis especially underscored the importance of the pyridine ring in compound 21, positioned
near favorable electronegative and steric contours. This ring engaged in multiple contacts, including n—amide, ©—
alkyl, van der Waals, and carbon—hydrogen bonds.

Given the differing polar contacts that these ligands make with various residues, evaluating hydrogen-bonding
contributions is essential. Trajectory examination was therefore performed to quantify hydrogen bonds over time.
On average, compound 21 maintained more hydrogen bonds than compound 10. Detailed inspection showed that
the dominant contacts for 21 involved its carboxylate group with Argl94 and Gln190, likely providing critical
anchoring stability within the pocket. For compound 10, the primary hydrogen bonds originated from its
benzisoxazole ring with Ser53.

To thoroughly assess the individual contributions of binding-site residues to the affinity of compounds 21 and 10,
per-residue energy decomposition was conducted. As illustrated in Figure 10, Arg194 and GIn190—which form
hydrogen bonds with the carboxylate of 21—delivered the strongest energetic contributions to the binding of 21.
Their impact was 2—3 times greater than that of other residues. The lack of comparable contacts in compound 10
explains the large gap in electrostatic energy (AEelec) between the two ligands. For better visualization of
remaining interactions, contributions from these two residues were omitted in Figure 10. This adjusted view
clearly shows that contacts with residues like His36, Ser37, Asp106, Thr107, Thr108, Glu109, and Glul91 were
substantially stronger for compound 21 than for 10. Moreover, most of these enhanced interactions with 21 were
non-polar in nature. This detailed breakdown offers key insight into the contrasting binding modes of compounds
21 and 10 with the receptor residues.

341



O’Donnell ef al., Computational Exploration of IP6K1 Inhibition: Ligand- and Structure-Based Insights for Obesity-Related
Therapeutics

s 21 05 10

0 Jed g K 0 =

TN il | = ] 1 | W T ]

D SR StR PRO LEU i SERGLUGLNASP AR T 'vl&trﬂlnﬁ:!,(ﬁ, {LEU THR
1

38 st $8 53 103 104 105 106 107 308 1 110 187 31 204 285 05
| . !

T 1 " &

HID 36

SER 37
511

A

SER o

GLU 108w
GLN 1049

SER 38
PRO Som
ASP 106 4
THR 107
THR 108
GLU 109
o ARG 130
CYS 187
ARGIDE
LEU 204

GLN 190

GLN 191

(=3
7

AE (kcal/mol)

Figure 10. Total energy contributions of amino acid residues from per-residue decomposition analysis for the
complexes with compounds 21 and 10.

Conclusion

In recent years, the therapeutic potential of IP6K 1 has been thoroughly investigated, with growing data indicating
that blockers of this kinase and its isoforms could offer effective options for managing obesity and associated
metabolic conditions. Despite these promising insights, only a handful of IP6K1-targeted inhibitors have been
documented to date. As a result, the present research marks the inaugural extensive ligand-based in silico modeling
study dedicated to IP6K1 inhibitors. Of particular note, the employed dataset spanned over three orders of
magnitude in inhibitory potency against [IP6K1, even with constrained structural variation, making it especially
suitable for detailed analysis.

The lack of an experimental crystal structure for human IP6K1 further highlights the value of ligand-based
approaches in inhibitor development. This study's multi-layered goals commenced with the careful construction
of robust, predictive ligand-based models. Among them, the 2D-QSAR model built from the complete alvaDesc
descriptor set achieved the strongest statistical performance. Key structural insights derived from these models
stressed the necessity of equilibrium between hydrophobic and electrostatic forces, combined with specific 3D
topological/geometrical elements (e.g., CATS2D 01 LL [65], FO4[C-C]), for effective receptor binding.
Specifically, the optimal 2D-QSAR model, based on a small descriptor subset, revealed critical structural and
topological determinants of high versus low potency. The ligand-based pharmacophore model further identified
the essential roles of aromatic ring, hydrophobic, and hydrogen bond acceptor moieties in driving activity.
Although yielding somewhat restrained details, the 3D-QSAR analysis clearly demonstrated the impact of
electrostatic and steric factors on anti-IP6K1 activity. Complementing this, the IP6K1 homology model—coupled
with docking and MD simulations—uncovered substantial contributions from polar contacts involving residues
such as Glu190 and Arg194, especially with the negatively charged carboxylate functionality, to overall potency.
Beyond polar interactions, hydrophobic, n—n, and n—amide contacts were found vital for stabilizing ligand
occupancy in the pocket. Overall, these results offer valuable direction for future design of innovative IP6K1
inhibitors. Notably, the dataset's most potent entry (compound 21) displays approximately 26-fold selectivity for
IP6K1 and IP6K2 over IP6K3. Compound 20 shows 4.2-fold preference for IP6K1 relative to [IP6K3. Compound
20 has additionally proven effective in mitigating obesity-associated issues, such as enhancing glucose control,
reducing liver steatosis, and limiting weight increase, independent of food consumption changes. This contrasts
with prior IP6K inhibitors like SC-919 (IP6K1: IC50 < 5.6 nM; IP6K3: IC50 = 0.65 nM) and N2-(m-
trifluorobenzyl)-N6-(p-nitrobenzyl)-purine (TNP) (IP6K1: IC50 = 270 nM; IP6K3: IC50 = 260 nM) [13, 26].
Such selectivity profiles suggest distinct therapeutic potentials for these new compounds, differentiating them
from known agents and meriting deeper investigation for obesity therapy. The developed ligand-based models are
suitable for screening novel analogs' activities, and the exclusive use of freely available software enhances the
practical applicability of the findings. As a prospective extension, the docked complexes could be simulated over
longer timescales (e.g., 500 ns) in future MD studies.
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