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ABSTRACT 

Current investigations have revealed an encouraging method for managing the increasing worldwide challenge of 

obesity and its comorbid conditions. Targeting inositol hexakisphosphate kinase 1 (IP6K1) through inhibition has 

surfaced as a viable treatment avenue. The present work applies diverse ligand-based computational modeling 

approaches to examine the key structural elements needed for benzisoxazole compounds to inhibit IP6K1 

effectively. Initially, we generated linear 2D Quantitative Structure–Activity Relationship (2D-QSAR) models to 

balance explanatory clarity with robust forecasting capability. Subsequently, pharmacophore modeling from 

ligands was carried out to detect the critical chemical features driving the high potency of these molecules. To 

elucidate the three-dimensional aspects required for greater efficacy toward the IP6K1 target, various alignment 

strategies were used to build 3D-QSAR models. Because no experimental X-ray structure exists for IP6K1, a 

dependable homology model was constructed and thoroughly verified structurally, allowing structure-based 

studies on the chosen compound set. In addition, molecular dynamics simulations employing the docked 

configurations of these molecules yielded deeper understanding. The outcomes uniformly reinforced the 

explanatory insights gained from ligand-based as well as structure-based methods. This research supplies practical 

recommendations for developing new IP6K1 inhibitors. Significantly, all analyses were conducted using only 

freely available, non-proprietary software, facilitating easy replication of the described models. 

Keywords: IP6K1 inhibitors, QSAR, Pharmacophore mapping, Homology modeling, molecular dynamics 

simulations 
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Introduction 

During the past forty years, obesity rates around the world have increased without pause, impacting people 

regardless of age, ethnicity, or sex [1, 2]. This disturbing pattern has sparked numerous related medical problems, 

among them type 2 diabetes mellitus (T2DM), high blood pressure, abnormal blood lipids, heart and vessel 

diseases, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), issues with 

reproduction, breathing difficulties, mental and neurological disorders, and particular types of cancer [3-5]. 

Positively, integrating drugs with changes in daily habits has proven effective against obesity [6, 7]. A small 

weight or fat loss of just 5–10% can markedly decrease the chances of complications linked to obesity in grown-

ups [8, 9]. Nevertheless, keeping weight off over time is hard, fueling major efforts to find fresh treatment paths 

for obesity and its metabolic consequences [2, 10].   

Enzymes called inositol hexakisphosphate kinases (IP6Ks) are essential for adding a phosphate group to inositol 

hexakisphosphate (InsP6), forming 5-diphosphoinositol pentakisphosphate (5-InsP7 or 5PP-IP5, commonly IP7). 

This reaction starts the production of inositol pyrophosphates (PP-InsPs). New data suggest that blocking the 

pathway for making PP-InsPs could help treat metabolic issues, bone loss, blood clots, infections, cancer spread, 

and problems tied to aging [11, 12]. These inositol pyrophosphates act as powerful signaling agents in eukaryotic 
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cells, supporting key body functions like making ATP, releasing insulin, transmitting signals inside cells, moving 

cells, fixing DNA, and keeping energy levels stable [13-15].   

Out of the three chief IP6K types, IP6K1 and IP6K2 appear in most body tissues, but IP6K3 is mostly in heart, 

skeletal muscle, and brain [16]. IP6K1 works in two ways: it dampens some insulin signals yet boosts insulin 

release from pancreas cells. It also lowers heat production in fat cells, cutting overall energy use [17]. In mice 

without IP6K1, insulin works better and energy spending rises, shielding them from obesity caused by rich diets, 

too much insulin in blood, and resistance to insulin. Less IP6K1 also helps treat NAFLD and NASH [18]. Such 

results highlight IP6K1 blockers as possible drugs for obesity and connected metabolic troubles [18-21].   

Compounds with ring structures containing different atoms are often used in drug research to create new starting 

molecules for important targets [22-25]. Recently, Zhou et al. described a group of benzisoxazole compounds that 

block IP6K1, IP6K2, and IP6K3 to different extents [26]. Tests outside living organisms on HCT116 colon cancer 

cells showed strong blockers of IP6K1 and IP6K2 greatly cut inositol pyrophosphate amounts while leaving other 

inositol phosphates mostly unchanged. One top blocker dropped those levels by 66–81% with little effect 

elsewhere. Inside animals, these compounds eased obesity-linked damage and cut weight without changing how 

much was eaten.   

Using computers to help design drugs is now seen as vital in early discovery stages [27-31]. Here, we did thorough 

computational modeling on this key compound group to find what structure parts boost blocking of IP6K1. We 

noticed a solid link (R² ~ 0.85) between how well they block IP6K1 and IP6K2, meaning features for IP6K1 likely 

apply wider. Tools like 2D-QSAR, 3D-QSAR, and pharmacophore from ligands helped spot these parts. To check 

our work, we matched ligand-based computer results with dynamics simulations on an IP6K1 model built from 

similar proteins. This effort helps make better IP6K1 blockers and fights obesity.   

Materials and Methods  

Dataset collection and preparation   

Structures and activity data for 36 IP6K1 inhibitors were obtained from the recent publication by Zhou et al. [26], 

where IC50 values against IP6K1 were measured using a novel enzyme-coupled assay. These IC50 values were 

converted to pIC50 (−log10(IC50/10⁶)) and used as the dependent variable for all ligand-based modeling. For 

uniformity, the original SMILES strings provided by Zhou et al. were processed into canonical SMILES via 

RDKit and then generated as 3D structures in .sdf format using Discovery Studio Visualizer. Additional 

standardization of the 3D models was achieved with the Chemaxon Standardizer tool through the following 

procedures: (a) addition of explicit hydrogens, (b) aromatization, (c) 2D and 3D cleaning, (d) neutralization to 

achieve zero net charge, and (e) removal of any counterions.  

 

The 2D-QSAR modeling   

Descriptor calculation   

Molecular descriptors were computed with the alvaDesc version 2.0.4 tool, available through the freely accessible 

OCHEM online platform ([https://www.alvascience.com/alvadesc/](https://www.alvascience.com/alvadesc/)) 

(accessed on 7 September 2023) [32]. The 3D structures of the compounds were energy-minimized using the 

Corina module integrated in the OCHEM server [33]. The complete dataset for 2D-QSAR construction was 

assembled by merging these calculated descriptors with the corresponding pIC50 values of the compounds. 

 

Dataset division and model development   

The full dataset was divided into a training set (80%) and a test set (20%) employing the open-source Python 

program SFS-QSAR-tool_v2 ([https://github.com/ncordeirfcup/SFS-QSAR-

tool](https://github.com/ncordeirfcup/SFS-QSAR-tool), accessed on 12 September 2023) [34]. This split followed 

an activity-sorted strategy with an initial offset of 2, whereby compounds were first ordered by descending pIC50 

(starting from the second entry), and every fifth compound was assigned to the test set. Model building proceeded 

in two phases. First, only descriptors from eight highly interpretable categories were used: molecular properties, 

functional group counts, 2D atom pairs, drug-likeness indices, ring descriptors, atom-centered fragments, and 

constitutional descriptors. In the second phase, the entire range of alvaDesc descriptors was included. 

For the 2D-QSAR methodology, a multiple linear regression (MLR) approach was chosen. Two freely available 

programs were utilized to construct the MLR models:   
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(a) SFS-QSAR-tool_v2: This provides a user-friendly interface for creating linear, interpretable 2D-QSAR 

models. It implements sequential forward selection (SFS), adapted from the Mlxtend library code 

([http://rasbt.github.io/mlxtend/](http://rasbt.github.io/mlxtend/), accessed on 12 September 2023). SFS is a 

deterministic feature selection method that supports multiple scoring functions and cross-validation options to 

identify the optimal descriptors. Here, four scoring functions were tested: coefficient of determination (R²), 

negative mean absolute error (NMAE), negative mean Poisson deviance (NMPD), and negative mean gamma 

deviance (NMGD). For each, models were built without cross-validation and with 5-fold cross-validation, 

producing eight (=4 × 2) models per descriptor set.   

(b) Genetic-Algorithm v.4.1_2 ([https://dtclab.webs.com/software-tools](https://dtclab.webs.com/software-

tools), accessed on 14 September 2023): This tool constructs linear interpretable MLR models via a stochastic 

genetic algorithm (GA) procedure, details of which are reported elsewhere [35]. During preprocessing, correlation 

and variance thresholds were set to 0.99 and 0.0001, respectively, to retain a diverse descriptor pool while 

removing constant or near-identical ones. 

 

Evaluation of the models   

The performance of the 2D-QSAR models was evaluated using standard validation metrics, primarily Q²LOO 

(leave-one-out cross-validated R²) and R²Pred/Q²F1 (external predictive R²) [36, 37]. The former measures 

internal robustness on the training set, while the latter gauges predictive power on the external test set. Given the 

generation of multiple models per descriptor set through both stochastic and deterministic selection, these metrics 

were key for identifying the best-performing model. 

Further statistical indicators included R², adjusted R² (R²adj), mean absolute error (MAE), rm²LOO with 

∆rm²LOO (training set), rm²test with ∆rm²test (test set), Q²F2, and root mean square error of prediction (RMSEP) 

[38]. Descriptor inter-correlation was checked via the cross-correlation matrix, and multicollinearity in final 

models was quantified by variance inflation factor (VIF) [39]. Model robustness against chance correlation was 

verified through Y-randomization, using the cRp² parameter [40]. The applicability domain (AD) of selected 

models was defined via Williams plots, relating standardized residuals (for response outliers) to leverage values 

(for structural outliers) [38, 41]. 

 

Ligand-based pharmacophore modeling   

Structure-based pharmacophore models were generated using the open-source Quantitative Pharmacophore 

Activity Relationship (QPHAR) tool recently made available [42]. For every compound, 50 conformers were 

produced separately via genetic algorithm and Confab methods, powered by Open Babel software. 

QPHAR models were trained after partitioning the dataset into 26 training and 10 test compounds with the 

splitData.py script included in QPHAR. The underlying QPHAR methodology is thoroughly explained by 

Kohlbacher et al. [42] and in our earlier work [43]. Model training relied exclusively on the training set with the 

train.py script, applying random forest (RF) regression and these settings: fuzzy: True; weight type: distance; 

threshold: 1.5; number of estimators: 10; maximum depth: 3; metric: R². Activity predictions for the test set were 

obtained using the predict.py tool. Internal performance was judged by R², root mean square error (RMSE), 

standard error (SE), and median error (ME), whereas external performance was evaluated solely through R²Pred. 

The derived pharmacophore models also served for compound alignment. The profile3DActivity.py tool in 

QPHAR was applied to produce pharmacophore-superimposed structures, which were later used for 3D-QSAR 

development [44]. 

 

The 3D-QSAR modeling   

For 3D-QSAR analysis, the Open3DQSAR software was utilized, incorporating two distinct variable selection 

methods: (a) Fractional Factorial Design-based variable SELection (FFD-SEL) and (b) Uninformative Variable 

Elimination-based Partial Least Square (UVE-PLS) [45, 46].   

Model construction involved testing two alignment approaches. The first was an unsupervised rigid body 

alignment procedure. Input .sdf files were first geometry-optimized via steepest descent minimization under the 

MMFF94 force field. Post-optimization, 500 conformers per ligand were produced using 

rdMolAlign.GetCrippenO3A in RDKit before alignment—a higher number than the typical 100, as it delivered 

superior models here. A custom Python script named “alignment.py” handled the atom-based superimposition 

and is hosted at the GitHub repository: 
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[https://github.com/ncordeirfcup/InsilicoModeling_RdRp](https://github.com/ncordeirfcup/InsilicoModeling_R

dRp) (accessed on 1 October 2023).   

Model performance was evaluated through metrics including R², F-test values, leave-one-out (Q²LOO), leave-

two-out (Q²LTO), and leave-many-out (Q²LMO with 5 groups and 20 iterations) cross-validation, plus external 

R²Pred. Contour maps were visualized with isocontour levels at PLS coefficients of +0.002 (green) and −0.002 

(yellow) for steric fields, and +0.001 (blue) and −0.001 (red) for electrostatic fields. A comprehensive overview 

of the Open3DQSAR workflow is available elsewhere [47].   

 

Homology modeling   

The IP6K1 homology model was constructed via the SWISS-MODEL server using UniProt entry Q92551 

([https://www.uniprot.org/](https://www.uniprot.org/), accessed on 8 October 2023) [48]. After template 

identification and multi-template modeling, structural validation was performed with the MolProbity server 

([http://molprobity.biochem.duke.edu/index.php](http://molprobity.biochem.duke.edu/index.php), accessed on 

10 October 2023) [49, 50], integrated within SWISS-MODEL. This evaluation pinpointed the AlphaFold structure 

([https://alphafold.ebi.ac.uk/](https://alphafold.ebi.ac.uk/), accessed on 10 October 2023) as yielding the highest-

quality initial model [51, 52]. To enhance this AlphaFold-derived structure further, molecular dynamics (MD) 

refinement was conducted in Amber 20 [53], adhering to the protocol outlined by Nurisso et al. [54]. The 

refinement steps comprised: (i) two-phase minimization of the explicitly solvated system—first solvent/ions only, 

then the full system; (ii) gradual heating under NVT conditions followed by 2 ns NPT equilibration; (iii) a 50 ns 

production MD run in explicit solvent; and (iv) final minimization (5000 cycles of conjugate gradient) of the 

protein alone under Generalized Born implicit solvation.   

These procedures ensured a high-quality IP6K1 homology model, with post-refinement validation again 

performed using MolProbity.   

 

Molecular docking analysis   

Docking was performed with the advanced CB-Dock2 pipeline, an improved iteration of CB-Dock developed by 

Yang Cao and colleagues [55, 56]. Accessible at 

[http://cao.labshare.cn/clab/index.html](http://cao.labshare.cn/clab/index.html) (accessed on 12 October 2023), 

CB-Dock2 excels in binding-site prediction through its CurPocket algorithm, which detects cavities based on 

protein surface curvature. This proved particularly valuable for our homology model and for locating unknown 

ligand pockets. The three largest CurPocket-identified cavities (by volume) were chosen for docking, which was 

executed via the embedded AutoDock Vina engine [57].   

 

Molecular dynamics simulations   

The resulting docked complexes were subjected to 50 ns MD simulations following established protocols detailed 

previously [58, 59]. Ligand topologies were generated in Leap (Amber 14) using the general AMBER force field 

(GAFF) via Antechamber. Simulations employed the ff99SB force field with explicit TIP3P water in a cubic box 

maintaining an 8 Å buffer around the complex. Pressure and temperature were controlled with the Berendsen 

barostat and Langevin thermostat, respectively. Protein protonation states at pH 7.0 were assigned using the 

PDB2PQR server ([https://server.poissonboltzmann.org/pdb2pqr](https://server.poissonboltzmann.org/pdb2pqr), 

accessed on 14 October 2023) [60]. Trajectories were processed with PTRAJ and CPPTRAJ [61], and results 

visualized/plotted in QtGrace 

([https://sourceforge.net/projects/qtgrace/](https://sourceforge.net/projects/qtgrace/), accessed on 25 October 

2023). Hydrogen-bond occupancy between ligands and receptor residues was quantified from trajectories. 

Enthalpic binding free energies were computed via MM-GBSA using MMPBSA.py in AMBER [62]. Entropy 

terms (T∆S) were estimated through normal-mode analysis on 100 frames sampled from the final 10 ns, employing 

a quasi-harmonic approach based on the covariance matrix of atomic fluctuations. Per-residue energy 

decomposition was also performed with the Amber MM-GBSA module to dissect contributions from binding-site 

residues [58, 62]. All energy terms—van der Waals, electrostatic, polar solvation, and non-polar solvation—were 

derived from 200 snapshots taken from the last 10 ns. These analyses yielded essential details on ligand–receptor 

contacts and complex stability. 

Finally, the ADMET (adsorption, distribution, metabolism, excretion, and toxicity) properties of the three top-

performing compounds (namely, 21, 15, and 20) were assessed via the admetSAR-2.0 online tool 
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([http://lmmd.ecust.edu.cn/admetsar2](http://lmmd.ecust.edu.cn/admetsar2), accessed on 06 January 2026) [63]. 

Owing to their close structural resemblance, the three molecules showed similar ADMET characteristics. Each 

exhibited low acute oral toxicity (category III: LD50 > 500 mg/kg but < 5000 mg/kg), moderate-to-low aqueous 

solubility, and positive profiles for human oral bioavailability and intestinal absorption. Additionally, all 

demonstrated blood–brain barrier (BBB) penetration, as evidenced by the BOILED-Egg diagram, computed with 

the SwissADME platform ([http://www.swissadme.ch/](http://www.swissadme.ch/), accessed on 06 January 

2026) [64]. Predictions indicated potential hepatotoxicity, reproductive toxicity, myopathy (as OATP1B1 

inhibitors), and respiratory toxicity for these molecules. In contrast, no evidence emerged for carcinogenicity, 

mutagenicity (Ames test), cardiac toxicity (hERG inhibition), nephrotoxicity, or skin sensitization. 

Results and Discussion 

The 2D-QSAR modeling   

As per the plan in Materials and Methods, we started by finding top straight-line models connecting blocking 

strength to alvaDesc calculations, using sequential forward selection (SFS) and genetic algorithm (GA) to pick 

features. At first, multiple linear regression (MLR) 2D-QSAR setups used easy-to-understand alvaDesc items. 

Then, every descriptor was added to see if forecasting got better. All key findings appear in Table 1, covering 

models (M01–M09) from clear descriptors and (M10–M18) from the full set.  

  

Table 1. Summary of the statistical results obtained for the MLR models based on different types of descriptors 

a. 

Model 

ID 

Evaluation 

Metric 

CV 

Setting 

Interpretable 

Descriptors 
  Model 

ID 

All 

Descriptors 
  

   Q²LOO R²Pred 
Mean 

Value 
 Q²LOO R²Pred 

Mean 

Value 

M01 R² None 0.733 0.427 0.580 M10 0.812 0.688 0.750 

M02 NMAE None 0.654 0.799 0.727 M11 0.820 0.868 0.844 

M03 NMPD None 0.733 0.427 0.580 M12 0.812 0.688 0.750 

M04 NMGD None 0.427 0.427 0.427 M13 0.829 0.405 0.617 

M05 R² 5 0.671 0.680 0.676 M14 0.704 0.526 0.615 

M06 NMAE 5 0.662 0.253 0.458 M15 0.839 0.870 0.855 

M07 NMPD 5 −0.898 0.605 −0.147 M16 0.823 0.849 0.836 

M08 NMGD 5 −0.898 0.605 −0.147 M17 0.823 0.849 0.836 

M09 GA-LDA NA 0.800 0.785 0.793 M18 0.840 0.801 0.821 

a The best models found are depicted in bold. b Scoring function used in SFS-based feature selection. c Cross-validation used in the SFS-

based feature selection. d Descriptors belonging to the eight specific categories, as outlined in the Materials and Methods section. 

 

As evident, the genetic algorithm (GA) produced the most predictive MLR model among those using interpretable 

descriptors, whereas the sequential forward selection (SFS) algorithm, employing the NMAE scoring function 

with five-fold cross-validation, generated the most robust MLR model when incorporating all descriptors. A 

comparison of models M09 (based on interpretable descriptors) and M15 (based on all descriptors) demonstrated 

a marked enhancement in predictive performance with the inclusion of the full descriptor set. Nevertheless, model 

M09 exhibited acceptable predictive capability, particularly given the small number of descriptors involved. 

Furthermore, models M10–M18 were predominantly composed of 2D and 3D topological descriptors. Thus, both 

M09 and M15 warrant consideration: the former facilitates interpretation of structural requirements, while the 

latter offers superior predictivity and identifies descriptors that more precisely capture those requirements. 

Detailed statistical parameters for M09 and M15 are provided in Table 2. 

 

Table 2. Statistical results for the best 2D-QSAR models found, M09 and M15. 

Equation Statistical Results 

Model M09 (Interpretable descriptors) 

pIC50 = +0.169(±0.028) F04[C-C] −0.447(±0.139) CMC-50  

    −0.378(±0.131) nRCONHR −0.275(±0.029) H-047  

    +0.1(±0.031) CATS2D_01_LL + 5.125(±0.485) 

 

Ntraining = 29, R2 = 0.857, R2
adj = 0.826, Q2

LOO = 0.800,  

MAE = 0.201, rm
2
LOO = 0.724, ∆rm

2
LOO = 0.088  

Ntest = 7, R2
Pred/Q2

F1 = 0.785, Q2
F2 = 0.765,  

RMSEP = 0.309, rm
2
test = 0.706, ∆rm

2
test = 0.125 
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Model M15 (All descriptors) 

pIC50 = +0.223(±0.083) VE3sign_B(s) +3.079(±0.574) 

MATS4m  

    +10.797(±1.593) SpMax2_Bh(v) −6.694(±1.071) 

G3i  

    +10.984(±3.07) R5e+ −33.064(±6.179) 

 

Ntraining = 29, R2 = 0.890, R2
adj = 0.866, Q2

LOO = 0.839, 

MAE = 0.181, rm
2
LOO = 0.772, ∆rm

2
LOO = 0.117 

Ntest = 7, R2
Pred/Q2

F1 = 0.870, Q2
F2 = 0.858,  

RMSEP = 0.240, rm
2
test = 0.740, ∆rm

2
test = 0.120 

 

Notably, model development initially incorporated five descriptors, given the training set of 29 compounds, 

thereby adhering to the recommended 1:5 ratio of independent variables to training samples. To evaluate whether 

fewer descriptors could yield a statistically sound model, a 5% improvement threshold was applied via the SFS-

QSAR-tool_v2, where a new descriptor was added only if it increased Q²LOO by at least 5%. For both M09 and 

M15, exactly five descriptors were retained, confirming the necessity of this number. 

Plots of observed versus predicted activity for M09 and M15 are presented in Figure 1. In addition to Q²LOO and 

R²Pred, other internal and external validation metrics were satisfactory (e.g., MAE: 0.201 for M09, 0.181 for 

M15). Key assumptions for linear regression were also fulfilled, including low inter-descriptor correlation 

(maximum R: 0.469 and 0.404). Variance inflation factor (VIF) values were all below 2.0, ruling out 

multicollinearity. Moreover, cRp² values of 0.761 for M09 and 0.794 for M15 affirmed that both models were 

robust and not derived by chance. 

 

 
 

a) b) 

  

c) d) 

Figure 1. Observed vs. predicted activity plots for models M09 (a) and M15 (b), along with their 

corresponding Williams plots: M09 (c) and M15 (d). 

 

The Williams plots in Figure 1 further illustrate the applicability domain of these optimal 2D-QSAR models, 

revealing no structural or response outliers in either case. The relative importance of descriptors, based on 

standardized coefficients, is depicted in Figure 2. 
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Figure 2. Relative significance of the descriptors of models M09 (left) and M15 (right). 

 

Attention is first directed to the descriptors comprising model M09. The dominant descriptor is CMC-50, a drug-

likeness index corresponding to the Ghose–Viswanadhan–Wendoloski Comprehensive Medicinal Chemistry 

(CMC) drug-like score at 50%. Its negative coefficient indicates that lower CMC-50 values favor greater 

biological activity. CMC-50 is a binary descriptor determined by ALOGP (Ghose–Crippen octanol–water 

partition coefficient), AMR (Ghose–Crippen molar refractivity), MW (molecular weight), and nAT (number of 

atoms). Values of 1 are assigned when ALOGP falls between 1.3 and 4.1, AMR between 70 and 110, MW between 

230 and 390, and nAT between 30 and 55; otherwise, it is 0 (Figure 3). Closer examination shows that most high-

activity compounds have low CMC-50 values. In particular, elevated lipophilicity (higher ALOGP) appears to be 

the primary driver, implying that hydrophobic interactions substantially influence the inhibitory potency of these 

compounds. 

 

 
Figure 3. Typical examples highlighting the importance of the CMC-50 descriptor to the inhibitory activity. 

 

The second most important descriptor in M09 is nRCONHR, the count of secondary amides (aliphatic). Its 

negative coefficient suggests that a higher count correlates with reduced activity. The third key descriptor, H-047 

(hydrogens attached to C¹(sp³)/C⁰(sp²), where C¹ denotes sp³ carbon without heteroatom attachment and C⁰ 

denotes sp² carbon without heteroatom attachment), is elevated in lower-activity compounds (Figure 4). This 

pattern arises mainly from amide or ester side chains and unsubstituted phenyl rings in less active molecules. 
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Figure 4. Typical examples highlighting the importance of the H-047 descriptor to the inhibitory activity. 

 

 
Figure 5. Typical examples illustrating the role of both F04[C-C] and CATS2D_01_LL descriptors in 

inhibitory activity. 

 

Shifting focus to the descriptors within model M15, Table 3 provides explanations for these terms. Notably, every 

descriptor in this model consists of intricate graph-derived topological indices. The descriptors R5e+ and G3i fall 

under 3D descriptors, with their magnitudes influenced by the precise 3D geometry of the molecules. The others 

qualify as 2D descriptors. The exceptional statistical predictivity of this model underscores that the exact 

topological arrangement of the molecules critically governs their biological potency. Nonetheless, the top two 

descriptors, R5e+ and SpMax2_Bh(v), exhibit nearly equivalent relative importance. These are respectively 

weighted by electronegativity and van der Waals volume. Hence, this points to the involvement of the molecules' 

3D shape, alongside electrostatic and hydrophobic forces, in elevating biological activity. The third leading 

descriptor links to ionization potential, tied to molecular polarity, while MATS4m relates to atomic mass. In 

summary, M09 primarily emphasizes hydrophobicity's role in boosting activity, whereas M15's descriptors reveal 

the need for equilibrium between hydrophobic/steric and electrostatic forces for optimal activity. 

 

Table 3. The five descriptors present in the 2D-QSAR model M15. 

Descriptor Reworded Description Descriptor Class 

R5e+ 
Maximum autocorrelation at lag 5 calculated using Sanderson 

electronegativity weighting 
GETAWAY 

SpMax2_Bh(v) 
Second highest eigenvalue derived from the Burden matrix, weighted by van 

der Waals volume 
Burden eigenvalues 
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G3i 
WHIM symmetry index (third directional component) computed with 

ionization potential weighting 
WHIM 

MATS4m Moran index autocorrelation at lag 4, weighted according to atomic mass 2D autocorrelations 

VE3sign_B(s) 
Logarithmic sum of coefficients from the final Burden matrix eigenvector, 

weighted by intrinsic state (I-State) 
2D matrix-based 

 

Ligand-based pharmacophore mapping   

Following the elucidation of structural needs via 2D-QSAR, ligand-based pharmacophore mapping was applied 

to create predictive models and discern pharmacophore elements linked to superior potency versus IP6K1. The 

QPHAR software generated these ligand-based pharmacophore models, splitting the dataset into 70% training and 

30% test portions. Conformers produced by the genetic algorithm outperformed those from Confab in model 

quality. Statistical outcomes for the top pharmacophore model appear in Table 4. 

 

Table 4. Statistical results for the best QPHAR-based pharmacophore model found. 

Parameter Training Test 

N 26 10 

R2 0.845  

RMSE 0.309  

ME 0.248  

SE 0.183  

R2
Pred  0.565 

R2
Pred

a  0.716 

a After removal of one outlier.   

 

This model showed solid internal predictivity, with R² of 0.845 and RMSE of 0.309. External validation yielded 

R²Pred exceeding the 0.50 threshold, rising to 0.716 after excluding one compound. QPHAR notably picks the 

dataset's most rigid molecule as the template. 

The template pharmacophore, aligned to compound 17, appears in Figure 6, including the pharmacophore 

container and final quantitative pharmacophore (hpmodel). Pharmacophore alignments for three compounds (21, 

35, and 10) of varying activities are also shown. 
 

 
a) 

   

b) c) d) 

Figure 6. (a) Pharmacophore features of the template molecule alongside the generated quantitative 

pharmacophore. The pharmacophore-aligned structures of compounds 21 (b), 35 (c), and 10 (d), along with 

the pharmacophore features, are also displayed. 
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Of these, compound 21 displays highest potency (pIC50 = 7.585), 10 the lowest (pIC50 = 4.530), and 35 

intermediate (pIC50 = 6.553). The QPHAR model precisely forecasted their IP6K1 potencies. Hydrophobic and 

aromatic ring features declined progressively with falling affinity, while hydrogen bond acceptor features stayed 

fixed at two across all. These align with 2D-QSAR results, indicating hydrophobic contacts' key part in IP6K1 

binding. Yet, the full QSAR model (M15), incorporating 2D/3D descriptors, suggested polar contacts' importance 

too. Compound 21 has four aromatic ring (AR) features, 35 three, and 10 two. Both 21 and 10 match two 

hydrophobic features; 35 matches three. Versus 10, 35 adds two key features—one AR and one hydrophobic—

potentially accounting for their activity gap. 

 

The 3D-QSAR analysis   

For deeper understanding of potency requirements against IP6K1, 3D-QSAR analysis was conducted with open-

source Open3DQSAR, adhering to prior alignment methods and feature selection. Rigid body alignment produced 

stronger, more predictive statistics, as in Table 5. The vital alignment process is shown visually in Figure 6. 

 

Table 5. Statistical results of 3D-QSAR models using different feature selection techniques a. 

Parameter b FFD-SEL UVE-PLS 

Ntraining 29 29 

NCb 4 3 

R2 (SDEC) 0.912 (0.176) 0.856 (0.224) 

F 62.157 33.847 

Q2
LOO (SDEP) 0.637 (0.357) 0.370 (0.471) 

Q2
LTO (SDEP) 0.626 (0.363) 0.361 (0.474) 

Q2
LMO (SDEP) 0.573 (0.387) 0.311 (0.492) 

Ntest 7 7 

R2
Pred (SDEP) 0.747 (0.564) 0.668 (0.646) 

Q2
s 0.428 --- 

a FFD-SEL: Fractional Factorial Design-based variable SELection; UVE-PLS: Uninformative Variable Elimination-based Partial Least 

Square. b NC: Number of principal components; SDEC: Standard error of calculation; SDEP: Standard error of prediction.   

 

Evidently, FFD-SEL proved highly effective, delivering strong internal/external predictivity: Q²LOO of 0.637 

and R²Pred of 0.747. Amid 3D-QSAR's sensitivity—particularly for small datasets—this model maintains steady 

moderate-to-good predictivity. Its distinction lies in inherent robustness, shown by sharp cross-validation decline 

after response scrambling. 

Figure 7 presents contour maps from FFD-SEL, for compounds 25, 31, and 10. These depict steric/electrostatic 

influences, with steric at 60% and electrostatic at 40%. Contours show two main zones: right side blends 

steric/electrostatic; left side steric only. Right-side contours prove pivotal for potency. 

 

  
a) b) 
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c) d) 

Figure 7. (a) Aligned structures for the dataset compounds. Contour maps obtained using the best 3D-QSAR 

model for compounds (b) 21, (c) 35, and (d) 10. The color codes used range from green (steric favorable) to 

red (electrostatic favorable). 

 

For potent compound 21, favorable steric/electronegative regions near its pyridine imply dual 

hydrophobic/electrostatic receptor engagement. Intermediate 35 misses some electronegative contour but gains 

via methyl in hydrophobic zone. Least active 10 evades both, its dimethylamine side chain hitting steric 

unfavorable area. Strikingly, no contours appear near benzisoxazole rings, confirming rigid body alignment 

success. 

 

Homology modeling of IP6K1 and MD simulations   

As of now, no experimentally determined X-ray structure exists for IP6K1. For this reason, all structure-based 

work had to rely on a computed homology model. In this study, the model was built using the UniProt accession 

Q92551 through the SWISS-MODEL server. Five high-ranking templates based on GMQE (Global Model 

Quality Estimation) scores were considered, and the AlphaFold DB structure—with a MolProbity score of 1.70—

stood out as the best, outperforming alternatives that scored above 2.0. That said, the starting AlphaFold model 

still needed optimization, given its clash score of 0.58 and Ramachandran statistics of 86.10% favored and 4.10% 

outliers. Refinement was achieved by running molecular dynamics (MD) simulations on the initial model, 

producing a final version with a much improved MolProbity score of 0.79. This polished model showed 95.90% 

Ramachandran favored residues and zero outliers. The optimized homology model was then used for all 

subsequent docking and MD studies. 

Despite the structural improvements, pinpointing credible ligand-binding pockets in IP6K1 proved challenging. 

To tackle this, binding-site detection was performed with the CB-Dock2 online tool, followed by docking of the 

compounds into the three highest-scoring cavities using AutoDock Vina. Strikingly, the strongest and weakest 

inhibitors both preferred the same pocket (centered at X = 63 Å, Y = 77 Å, Z = 40 Å, volume 801 Å³) and achieved 

the best Vina docking scores. Each complex was then subjected to 50 ns of explicit-solvent MD simulation to 

explore its dynamic properties. Attention was first paid to whether the ligands remained stably bound in the 

predicted site. Ligand RMSD trajectories (Figure 8) indicate that the more potent compound 21 initially moved 

away from its docking pose but settled into a stable position after approximately 15 ns. The weaker compound 10 

similarly drifted early in the simulation and only partially stabilized around 30 ns, yet showed greater overall 

mobility than compound 21. Corresponding protein RMSF analysis revealed considerably larger fluctuations in 

the segment comprising residues 125–180 when bound to compound 10 compared to compound 21. 
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a) b) 

Figure 8. Ligand RMSD trajectories (a) and protein RMSF profiles (b) for the potent compound 21 and the 

weaker compound 10. 

 

Binding free energies were subsequently estimated via MM-GBSA calculations on the MD frames to quantify 

enthalpic contributions. Data presented in Table 6 clearly show that compound 21 enjoys a far more favorable 

predicted binding energy than compound 10, driven mainly by markedly stronger electrostatic terms. Both polar 

and non-polar contact energies were superior for compound 21. While compound 10 gained some advantage from 

a lower solvation penalty—likely owing to its compact size—its substantially weaker residue interactions 

ultimately led to poorer overall affinity. 

 

Table 6. Calculated binding free energies [ΔGbind(T)] for selected IP6K1 complexes a. All the components 

shown are in kcal/mol. 

Complexes ΔEvdW ΔEelec ΔGgas ΔGpolar ΔGnon-polar ΔGsolvation T∆S ΔGbind(T) 

21 −42.45 −125.22 −167.67 +133.91 −5.78 +128.13 −21.20 −18.35 

10 −38.26 −5.73 −43.99 +18.32 −4.25 +14.07 −24.26 −5.67 

a ΔGbind(T): theoretical binding free energy (ΔGbind(T) = ΔEvdW + ΔEelec + ΔGpolar + ΔGnon-polar − TΔS) and its components, namely 

ΔEvdW: van der Waals interaction energy; ΔEelec: electrostatic interaction energy; ΔGpolar: polar solvation free energy; ΔGnon-polar: non-

polar solvation free energy, TΔS: entropy. 

 

Representative structures averaged over the last 10 ns of each trajectory are displayed in Figure 9. The more 

active compound 21 forms substantially more contacts with pocket residues than compound 10, with the extra 

interactions predominantly hydrophobic in character. A prominent polar contact is also visible between the 

carboxylate of compound 21 and Arg194. This same carboxylate engages firmly with both Gln190 and Arg194, 

playing a central role in anchoring the ligand securely. 
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a) b) 

Figure 9. Final binding modes of compounds 21 (a) and 10 (b) in the IP6K1 complexes as obtained from the 

MD simulations. 

 

Conversely, the benzisoxazole ring in the weaker compound 10 established hydrogen bonds with Ser53 and 

Asp106. These contacts were also highlighted by the pharmacophore model. In line with the pharmacophore 

findings, all three aromatic groups in compound 21 (comprising one phenyl and one benzisoxazole) participated 

in π–π or π–amide stacking with Thr108 and Tyr205, whereas only a single aromatic group in compound 10 

formed such a contact with Tyr205. Notably, the polar side chain of compound 10 extended toward the solvent 

and contributed fewer interactions, while the hydrophobic portions of compound 21 formed extensively more 

contacts with surrounding residues. These patterns align with the 2D-QSAR results, where descriptors such as 

CMC-50 and SpMax2_Bh(v) ranked highest in importance, and with the 3D-QSAR outcomes, where the side 

chain of compound 10 occupied a sterically unfavorable region. 

The 3D-QSAR analysis especially underscored the importance of the pyridine ring in compound 21, positioned 

near favorable electronegative and steric contours. This ring engaged in multiple contacts, including π–amide, π–

alkyl, van der Waals, and carbon–hydrogen bonds. 

Given the differing polar contacts that these ligands make with various residues, evaluating hydrogen-bonding 

contributions is essential. Trajectory examination was therefore performed to quantify hydrogen bonds over time. 

On average, compound 21 maintained more hydrogen bonds than compound 10. Detailed inspection showed that 

the dominant contacts for 21 involved its carboxylate group with Arg194 and Gln190, likely providing critical 

anchoring stability within the pocket. For compound 10, the primary hydrogen bonds originated from its 

benzisoxazole ring with Ser53. 

To thoroughly assess the individual contributions of binding-site residues to the affinity of compounds 21 and 10, 

per-residue energy decomposition was conducted. As illustrated in Figure 10, Arg194 and Gln190—which form 

hydrogen bonds with the carboxylate of 21—delivered the strongest energetic contributions to the binding of 21. 

Their impact was 2–3 times greater than that of other residues. The lack of comparable contacts in compound 10 

explains the large gap in electrostatic energy (ΔEelec) between the two ligands. For better visualization of 

remaining interactions, contributions from these two residues were omitted in Figure 10. This adjusted view 

clearly shows that contacts with residues like His36, Ser37, Asp106, Thr107, Thr108, Glu109, and Glu191 were 

substantially stronger for compound 21 than for 10. Moreover, most of these enhanced interactions with 21 were 

non-polar in nature. This detailed breakdown offers key insight into the contrasting binding modes of compounds 

21 and 10 with the receptor residues. 
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Figure 10. Total energy contributions of amino acid residues from per-residue decomposition analysis for the 

complexes with compounds 21 and 10. 

Conclusion 

In recent years, the therapeutic potential of IP6K1 has been thoroughly investigated, with growing data indicating 

that blockers of this kinase and its isoforms could offer effective options for managing obesity and associated 

metabolic conditions. Despite these promising insights, only a handful of IP6K1-targeted inhibitors have been 

documented to date. As a result, the present research marks the inaugural extensive ligand-based in silico modeling 

study dedicated to IP6K1 inhibitors. Of particular note, the employed dataset spanned over three orders of 

magnitude in inhibitory potency against IP6K1, even with constrained structural variation, making it especially 

suitable for detailed analysis. 

The lack of an experimental crystal structure for human IP6K1 further highlights the value of ligand-based 

approaches in inhibitor development. This study's multi-layered goals commenced with the careful construction 

of robust, predictive ligand-based models. Among them, the 2D-QSAR model built from the complete alvaDesc 

descriptor set achieved the strongest statistical performance. Key structural insights derived from these models 

stressed the necessity of equilibrium between hydrophobic and electrostatic forces, combined with specific 3D 

topological/geometrical elements (e.g., CATS2D_01_LL [65], F04[C-C]), for effective receptor binding. 

Specifically, the optimal 2D-QSAR model, based on a small descriptor subset, revealed critical structural and 

topological determinants of high versus low potency. The ligand-based pharmacophore model further identified 

the essential roles of aromatic ring, hydrophobic, and hydrogen bond acceptor moieties in driving activity. 

Although yielding somewhat restrained details, the 3D-QSAR analysis clearly demonstrated the impact of 

electrostatic and steric factors on anti-IP6K1 activity. Complementing this, the IP6K1 homology model—coupled 

with docking and MD simulations—uncovered substantial contributions from polar contacts involving residues 

such as Glu190 and Arg194, especially with the negatively charged carboxylate functionality, to overall potency. 

Beyond polar interactions, hydrophobic, π–π, and π–amide contacts were found vital for stabilizing ligand 

occupancy in the pocket. Overall, these results offer valuable direction for future design of innovative IP6K1 

inhibitors. Notably, the dataset's most potent entry (compound 21) displays approximately 26-fold selectivity for 

IP6K1 and IP6K2 over IP6K3. Compound 20 shows 4.2-fold preference for IP6K1 relative to IP6K3. Compound 

20 has additionally proven effective in mitigating obesity-associated issues, such as enhancing glucose control, 

reducing liver steatosis, and limiting weight increase, independent of food consumption changes. This contrasts 

with prior IP6K inhibitors like SC-919 (IP6K1: IC50 < 5.6 nM; IP6K3: IC50 = 0.65 nM) and N2-(m-

trifluorobenzyl)-N6-(p-nitrobenzyl)-purine (TNP) (IP6K1: IC50 = 270 nM; IP6K3: IC50 = 260 nM) [13, 26]. 

Such selectivity profiles suggest distinct therapeutic potentials for these new compounds, differentiating them 

from known agents and meriting deeper investigation for obesity therapy. The developed ligand-based models are 

suitable for screening novel analogs' activities, and the exclusive use of freely available software enhances the 

practical applicability of the findings. As a prospective extension, the docked complexes could be simulated over 

longer timescales (e.g., 500 ns) in future MD studies. 
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