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ABSTRACT

This study investigated whether MR-based radiomics can provide imaging biomarkers capable of distinguishing
deficiency-type and excess-type Traditional Chinese Medicine (TCM) syndromes in patients with prostate cancer
(PCa). A cohort of 121 men with PCa from two institutions was analyzed, with 84 allocated to a training set and
37 to an external validation set. According to TCM diagnostic criteria, patients were classified into deficiency or
excess syndrome groups. Quantitative radiomic features were extracted from T2-weighted images (T2WI),
diffusion-weighted sequences, and corresponding apparent diffusion coefficient (ADC) maps. Feature selection
was performed in the training set using minimum redundancy maximum relevance followed by least absolute
shrinkage and selection operator, yielding a radiomic signature for classification. Model performance was
examined using receiver  operating characteristic  analyses and  calibration  assessments.
Across all three image types—T2WI, diffusion-weighted imaging, and ADC maps—patients presenting with
excess syndromes showed significantly higher radiomic scores than those with deficiency syndromes. The T2WI,
diffusion-weighted, and ADC models achieved areas under the ROC curve of 0.824, 0.824, and 0.847 in the
training set, and 0.759, 0.750, and 0.809 in the validation set. Among these, the ADC-based model provided the
strongest discriminatory capability, reaching accuracies of 0.788 in training and 0.778 in validation. Calibration
results indicated good alignment between predicted radiomic outputs and actual TCM syndrome categories.
Radiomics derived from MR imaging offers a feasible, non-invasive strategy for differentiating TCM deficiency
versus excess syndromes in PCa, with ADC-related features demonstrating the highest diagnostic value.
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Introduction

Prostate cancer (PCa) is the second most frequently diagnosed malignancy among men globally [1]. Although its
incidence in China remains lower than that reported in Western countries, both the occurrence and mortality of
PCa have risen markedly in recent years [2]. Traditional Chinese Medicine (TCM) continues to play a significant
role in PCa management, particularly for patients with advanced disease. In TCM, syndromes represent
comprehensive summaries of pathological mechanisms, disease severity, and expected progression at specific
clinical stages [3, 4]. Because syndrome differentiation relies heavily on the clinical experience of individual
practitioners, a wide range of syndrome patterns has emerged in the context of PCa [5, 6]. A review by Si et al.,
which examined 76 publications on TCM-related diagnosis and treatment of PCa from 1979 to 2014, identified
31 core TCM syndromes and as many as 254 variations [5]. The absence of a standardized framework for TCM
syndrome differentiation in PCa has therefore posed challenges to systematic development in this field. Integrating
objective, quantifiable indicators derived from modern medical technologies and artificial intelligence may help
strengthen and modernize syndrome classification in PCa [7].

Magnetic resonance imaging (MRI) is broadly considered the imaging modality of choice for evaluating prostate
disorders due to its superior soft-tissue contrast, high spatial resolution, and combined functional and anatomical
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data. MRI plays a crucial role in the detection, localization, targeted biopsy, staging, risk stratification, and
surveillance of PCa [8]. Among MRI sequences, T2-weighted imaging (T2WI), diffusion-weighted imaging
(DWI), and corresponding apparent diffusion coefficient (ADC) maps are central to the assessment and diagnosis
of PCa |9, 10].

Radiomics offers a method for extracting large volumes of quantitative, high-dimensional data from routine
imaging, allowing such data to be transformed into analyzable biomarkers [11]. Recent work suggests that MRI-
based radiomics can enhance PCa diagnosis [12, 13]. For example, Min et al. reported that a multiparametric MRI
radiomics model achieved area-under-the-curve values of 0.872 and 0.823 for detecting PCa with Gleason score
>3 + 4 in training and test cohorts, respectively [12]. Despite these advances, the potential of radiomics to predict
TCM syndromes in PCa has not been examined. According to the traditional “eight principles,” the opposing
concepts of yin and yang—expressed clinically as deficiency and excess—capture the essence of most TCM
syndrome categories [14, 15]. This theoretical framework simplifies the large variety of PCa-related TCM
syndromes into two fundamental groups, making it feasible to explore syndrome classification through modern
imaging analytics.

Therefore, the present study aimed to investigate whether MRI-derived radiomic signatures can differentiate
between TCM excess and deficiency syndromes in patients with PCa.

Materials and Methods

Patient population

This retrospective investigation received approval from the local institutional ethics committees of both
participating hospitals (Approval No: 2022KY051). Because of its retrospective design, the requirement for
written informed consent was waived. Patients were recruited from two institutions: Hangzhou TCM Hospital
Affiliated with Zhejiang Chinese Medical University (Center 1) and the First Affiliated Hospital of Zhejiang
Chinese Medical University (Center 2). Syndrome differentiation was carried out according to the criteria outlined
in TCM Oncology [15]. Cases categorized as spleen—kidney deficiency, dual deficiency of qi and yin, or gi-blood
deficiency were assigned to the TCM deficiency group, whereas damp-heat accumulation, phlegm-blood stasis,
and qi stagnation with blood stasis were designated as TCM excess syndromes. To ensure the consistency and
reliability of syndrome classification, two associate chief physicians specializing in TCM independently evaluated
each case.

Patients were eligible if: (1) PCa had been pathologically confirmed via radical prostatectomy or biopsy; (2) MRI
examinations included T1WI, T2WI, and DWI acquired on a 3.0-T scanner; and (3) pathological assessment was
completed within two months of the MRI study. Exclusion criteria included: (1) comorbidities capable of
influencing TCM syndrome evaluation, such as acute respiratory infections, urinary tract infections, diabetes, or
recent cardiovascular events; (2) any prior treatment for PCa before the MRI examination; and (3) inadequate
image quality or tumor lesions measuring less than 5 mm on MRI. Of the 204 initially reviewed PCa patients, 83
were excluded based on these criteria, leaving 121 for final analysis. The cohort from Center 1 (n = 84) served as
the training sample, while 37 patients from Center 2 formed the external validation set. Within the training group,
45 patients exhibited TCM excess syndromes and 39 were classified as deficiency syndromes; in the validation
cohort, the numbers were 15 and 22, respectively. Clinical data extracted from electronic medical records included
age and prostate-specific antigen (PSA) levels, with the PSA test performed within one month of the MRI scan.

MRI acquisition

All imaging was performed using either a GE Discovery MR750 or Siemens Magnetom Verio 3.0-T scanner,
employing a pelvic phased-array coil. Prior to scanning, patients were instructed to maintain a moderately filled
bladder. The imaging field encompassed the entire prostate and seminal vesicles. The MRI protocol consisted of
axial T1-weighted imaging, axial and sagittal T2-weighted imaging, and axial diffusion-weighted imaging. DWI
was obtained using b-values of 0—50 s/mm? and 800—1000 s/mm?. Apparent diffusion coefficient maps were
automatically generated on each scanner using a standard mono-exponential model.

Pathological evaluation
All patients underwent systematic transrectal ultrasound-guided biopsy, consisting of 10—12 cores, with additional
cognitive-targeted sampling when MRI revealed suspicious lesions. The performing urologist localized biopsy
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targets through cognitive fusion whenever appropriate. Each specimen was labeled individually according to its
anatomical origin. Histopathological assessment was conducted following the International Society of Urological
Pathology (ISUP) recommendations [16]. A radiologist with 22 years of experience in prostate MRI correlated
MR findings with the reference standards—biopsy core locations and, when applicable, radical prostatectomy
results—to identify the index lesion.

Lesion segmentation on MRI

Lesion delineation was performed using ITK-SNAP version 3.6.0 (www.itk-snap.org). A radiologist with seven
years of dedicated experience in prostate MRI (Z.P.L.) manually outlined the regions of interest (ROIs), guided
by corresponding pathological findings. Tumors were segmented in three dimensions to generate volumetric
ROIs. In patients with multifocal disease, the index lesion—representing the site most reflective of tumor
aggressiveness and biological behavior—was selected for analysis in accordance with established criteria [17,
18]. ROIs were drawn to encompass the tumor tissue as completely as possible while excluding adjacent non-
neoplastic structures. Maximum tumor diameters were recorded on T2WI, and MRI-based T-staging was assigned
using the National Comprehensive Cancer Network (NCCN) guidelines [19].

Radiomic feature extraction

The segmented ROIs from T2WI, DWI, and ADC images were imported into the Analysis Kit (AK, GE
Healthcare, USA) for radiomic feature calculation. Each imaging sequence yielded 1,316 quantitative features,
including first-order histogram metrics, shape descriptors, gray-level co-occurrence matrix (GLCM) features,
gray-level run-length matrix (GLRLM) features, gray-level dependence matrix (GLDM) features, neighboring
gray-tone difference matrix (NGTDM) features, gray-level size zone matrix (GLSZM) features, and wavelet-
transformed variables.

Because the two participating centers used different scanner models and acquisition parameters, all images
underwent preprocessing before feature extraction. This included resampling to an isotropic resolution of 1 x 1 x
1 mm?® and normalizing gray levels to the 0-255 range to optimize comparability across datasets. Following
extraction, all features were standardized using Z-score normalization ((x—p)/c) where x represents the feature
value, ¢ the mean across all patients for that feature, and o the corresponding standard deviation. This step
minimized the influence of scale differences and ensured consistent weighting within the machine-learning
models.

Development of the radiomic signature

The radiomic signature was derived in two main stages. First, the minimum redundancy—maximum relevance
(mRMR) method was used to remove features with high redundancy or limited correlation with the target
classification. Second, the least absolute shrinkage and selection operator (LASSO) regression was applied to
further refine the feature set by penalizing coefficients, setting noncontributory feature weights to zero, and
selecting the most informative variables. The optimal regularization parameter (A) was identified using 10-fold
cross-validation to achieve the best predictive performance. The radiomic score (rad-score) for each patient was
computed by summing the selected features weighted by their corresponding LASSO coefficients.

Model discrimination was assessed using receiver operating characteristic (ROC) analyses in both the training
and validation datasets. Calibration curves were constructed to evaluate agreement between predicted probabilities
and the actual classification of TCM deficiency and excess syndromes. Model goodness-of-fit was examined using
the Hosmer—Lemeshow test; a P value greater than 0.05 indicated adequate concordance between the model
predictions and observed outcomes [20]. The overall radiomics pipeline is illustrated in Figure 1.
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Figure 1. Workflow of the development of the radiomic model.

Statistical analysis

Statistical analyses were performed using R software (version 3.5.1) and SPSS version 25.0. For continuous
variables, comparisons between groups were carried out using either the independent-samples #-test or the Mann—
Whitney U test, depending on data distribution. Categorical variables were assessed with the chi-square test or
Fisher’s exact test when appropriate. Differences in the area under the ROC curves (AUCs) among the various
predictive models were evaluated using the DeLong method. A two-tailed P value of less than 0.05 was considered
indicative of statistical significance.

Results and Discussion

Patient demographic data

A total of 121 patients with PCa met the inclusion criteria, with 84 allocated to the training cohort and 37 to the
validation cohort. Table 1 summarizes the distribution of TCM syndromes as well as the clinical profiles for both
groups. No statistically significant differences were observed between the TCM excess and deficiency syndrome
groups with respect to age, total PSA, free PSA, lesion count, lesion location, maximal tumor diameter, MRI T-
stage, or Gleason score in either cohort (P > 0.05), with the exception of lesion number in the training cohort,
which showed a significant difference.

Table 1. Clinical characteristics of patients in the training and validation cohorts.

haracteristic Training Validation
st Cohort Cohort
Deficiency Excess Deficiency Excess
syndrome (n=  syndrome (n = P syndrome (n = syndrome (n = P
39) 45) 22) 15)

Age (years) 73.56 + 8.13 73.98 £8.93 0.826 72.32+£6.25 73.80 + 7.83 0.527
Total PSA (ng/ml) 67.86+173.01 66.55+181.72  0.973 149.88 +£323.96  84.45+183.04 0.484
Free PSA (ng/ml) 5.54 +£8.09 4.85+8.14 0.696 8.45+13.07 7.16 £ 11.24 0.757

TCM syndrome NA NA
Spleen-kidney
=27 =13 -
deficiency syndrome (o ) (n )
Dampness-heat
accumulation - (n=22) - n=7)
syndrome
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Deficiency syndrome

of both qi and yin =7 i @=3) i
Phleg;;;zi.(::::tasm i (n=13) ) (n=5)
Deﬁcnel;;cli (())j Qi and (n=5) i (n=4) i
Qi stagnation and
blood stasis - (n=10) - (n=3)
syndrome
Ma"imt';“n‘:;am“er 209041128  19.05+£1077 0446  2494+1743  2286+1195  0.691
MRI T-stage 0.781 0.386
T2 26 (66.7%) 33 (73.3%) 14 (63.64%) 7 (46.67%)
T3 7 (17.9%) 7 (15.6%) 5(22.73%) 5(33.33%)
T4 6 (15.4%) 5(11.1%) 3 (13.64%) 3 (20.00%)
Location 0.932 0.591
PZ 18 (46.2%) 19 (42.2%) 7 (31.82%) 5(33.33%)
TZ 11 (28.2%) 14 (31.1%) 13 (59.09%) 7 (46.67%)
PZ and TZ 10 (25.6%) 12 (26.7%) 2 (9.09%) 3 (20.00%)
Lesion number 0.031* 0.539
1 29 (74.4%) 36 (80%) 14 (63.6%) 7 (46.7%)
2 9 (23.1%) 3 (6.7%) 7 (31.8%) 6 (40%)
3 1 (2.6%) 6 (13.3%) 1 (4.5%) 2 (13.4%)
Gleason score 0.535 0.127
6 13 (33.3%) 12 (26.7%) 4 (18.2%) 3 (20.0%)
7 7 (17.9%) 14 (31.1%) 12 (54.5%) 5(33.3%)
8 11 (28.2%) 14 (31.1%) 2 (9.1%) 6 (40.0%)
9 7 (17.9%) 4 (8.9%) 4 (18.2%) 1 (6.7%)
10 1(2.6%) 1(2.2%) 0 (0.0%) 0 (0.0%)

fPSA: free prostate-specific antigen; n: numbers of patients; NA: not available; PZ: peripheral zone; TCM: traditional Chinese medicine;
TPSA: total prostate-specific antigen; TZ: transition zone; *P: value < 0.05.

Construction of the radiomic signatures

To develop the radiomic models, the initial set of 1,316 features was first filtered and refined using the minimum
redundancy—maximum relevance (mRMR) approach, followed by the LASSO regression to select the most
informative variables. This process generated three independent models corresponding to T2WI, DWI, and ADC
sequences. For the ADC-based model, 14 features were retained and combined to form the predictive signature
(Figures 2). The T2WI and DWI models were built from 17 features each, selected through the same workflow.
Across both the training and validation cohorts, the resulting radiomic scores were consistently higher in tumors
classified as TCM excess syndrome compared with deficiency syndrome, indicating a clear distinction between
the two groups (p < 0.05, Figures 3).
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Figures 2. Overview of the features selected for constructing the radiomic models based on ADC, DWI, and
T2WI sequences. Abbreviations: ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging;
T2WI, T2-weighted imaging.
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Figures 3. Boxplots depicting ADC-based radiomic scores in patients with TCM deficiency versus excess
syndromes across both training and validation cohorts. Significant differences are evident between the

groups.
Abbreviations: Real_syndrome, excess syndrome; virtual syndrome, deficiency syndrome.

Evaluation of model performance

The radiomic signatures derived from T2WI, DWI, and ADC sequences all demonstrated the ability to distinguish
TCM deficiency from excess syndromes in prostate cancer. Notably, the ADC-based model exhibited the strongest
predictive performance. In the training cohort, it achieved an accuracy of 78.8%, sensitivity of 70.8%, specificity
of 90.7%, and an AUC of 0.847. Corresponding values in the validation cohort were 72.2% accuracy, 66.7%
sensitivity, 83.3% specificity, and 0.809 AUC (Table 2).

Although the ADC model performed best, formal comparison using DeLong’s test indicated that the differences
in AUC among the T2WI, DWI, and ADC models were not statistically significant in either cohort (P > 0.05).
Calibration analyses further demonstrated that predicted probabilities closely aligned with the observed
classifications, suggesting the models reliably reflected the actual TCM syndrome distribution (Figure 5).
Consistently, the Hosmer—Lemeshow goodness-of-fit test showed no evidence of poor model fit for any of the
three radiomic signatures in either cohort (P > 0.05).
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Figure 4. Receiver operating characteristic (ROC) curves for the ADC-based radiomic model in
distinguishing PCa patients with TCM excess syndrome from those with deficiency syndrome in both training
and validation cohorts. Abbreviations: AUC, area under the ROC curve.

Table 2. Predictive performance of the radiomic model in the training and validation cohorts.

Model Cohort AUC (95% CI) Sensitivity ~ Specificity = Accuracy PPV~ NPV
T2WI-based . 0.824 (0.730—
model Training cohort 0.914) 0.721 0.833 0.776 0.816  0.745
Validation 0.759 (0.603- 0.444 0.944 0.694 0889 0.630
cohort 0.916)
DWE-based 1 iingcohort 0524 (0732 0.884 0.690 0.788 0745  0.853
model 0.915)
Validation 0.750 (0.578—
cohort 0.922) 0.944 0.611 0.778 0.708 0917
ADC-based - 0.847 (0.765—
model Training cohort 0.928) 0.907 0.667 0.788 0.736  0.875
Validation 0.809 (0.656—
722 . . .81 .
cohort 0.961) 0.7 0.833 0.778 0.813  0.750

AUC: area under the receiver operating characteristic curve; 95 % CI: 95 % confidence interval; NPV: negative predictive value; PPV: positive

predictive value.
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Figure 5. Calibration curves for the ADC-based radiomic model predicting TCM excess syndrome in PCa
patients across both training and validation cohorts. These curves illustrate the agreement between predicted
probabilities and observed outcomes. Abbreviations: Pr, predicted probability.
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In this study, we developed and externally validated MRI-based radiomic models aimed at distinguishing PCa
patients with TCM excess syndrome from those with deficiency syndrome. Across both cohorts, the radiomic
signatures derived from T2WI, DWI, and ADC sequences showed strong classification performance. By providing
quantitative information directly from imaging data, radiomics offers a more objective approach to TCM
syndrome differentiation, complementing traditional assessments based on clinical presentation, tongue
examination, and pulse evaluation. These findings suggest that MRI radiomics could serve as a non-invasive,
computational tool for assessing TCM deficiency and excess syndromes in PCa patients.

The lack of standardized criteria for TCM syndrome classification has hindered its broader clinical adoption.
Integrating modern diagnostic techniques and objective biomarkers may help establish more reproducible
differentiation strategies [7]. Prior studies have demonstrated the biological basis of TCM syndromes in cancer.
For instance, single-cell RNA sequencing revealed that colorectal cancer patients with distinct TCM syndromes—
excess, deficiency, or mixed deficiency-excess—showed significant differences in immune cell subset
distributions [21]. Similarly, laboratory parameters such as total bilirubin, hemoglobin, uric acid, and hematocrit
were reported to correlate with TCM syndromes in colorectal cancer patients [22]. However, few studies have
explored the use of radiomics to predict TCM syndromes in PCa.

Our results demonstrate that radiomic signatures from T2WI, DWI, and ADC images can successfully
differentiate excess from deficiency syndromes in PCa. These models extract quantitative features from MR
images, enabling computational and reproducible evaluation of TCM syndromes, which represents a step toward
more objective syndrome assessment.

Among the three imaging modalities, the ADC-based model achieved superior discrimination. This likely reflects
the underlying principles of DWI and ADC imaging, which provide insights into tumor cellularity and tissue
microstructure [23]. DWI assesses the microscopic motion of water molecules, offering a non-invasive measure
of tissue density and cellular organization, and is considered particularly valuable for evaluating the peripheral
zone of the prostate [9, 10]. ADC values, derived from DWI, have been recognized as reliable quantitative markers
of tumor aggressiveness in PCa [24].

Moreover, the relationship between TCM syndromes and PCa pathology may explain these findings. In early-
stage PCa, excess-related syndromes such as qi stagnation and blood stasis are more common, whereas deficiency
syndromes, including spleen and kidney deficiency, tend to predominate in advanced disease [25]. The ADC
model may therefore capture imaging features that correlate with these pathological and functional changes,
enhancing its ability to differentiate TCM syndromes in PCa.

Most of the features selected for inclusion in the T2WI, DWI, and ADC radiomic models were derived from
wavelet transformations. This suggests a potential link between wavelet-based imaging features and TCM
syndrome classification in PCa. Wavelet transformation is a multiscale image analysis technique that decomposes
three-dimensional imaging data into different frequency components along multiple axes [26]. This finding aligns
with prior studies in radiomics. For example, a support vector machine-based radiomics study investigating lymph
node status in intrahepatic cholangiocarcinoma relied exclusively on five wavelet-derived features to build the
predictive model [27]. Such evidence indicates that wavelet features serve as robust imaging biomarkers,
reflecting tumor pathology and aggressiveness.

In the present study, tumor segmentation was performed manually by a single experienced radiologist to ensure
accuracy and consistency. Pathology reports were used as the reference standard during ROI delineation. While
manual segmentation is time-intensive, automated approaches for prostate cancer remain challenging. Previous
work by Young ef al. demonstrated that deep learning algorithms can match the performance of less experienced
radiologists in lesion detection and PI-RADS scoring [28]. Nonetheless, manual delineation by an expert remains
a reliable method for achieving precise and reproducible tumor contours in the context of radiomics studies.

This study has several limitations. First, its retrospective design and relatively small sample size limit the
generalizability of the findings. Prospective studies with larger and more diverse cohorts are necessary to validate
the predictive capability of MR-based radiomics for TCM syndrome classification in PCa. Second, lesions smaller
than 5 mm on MRI were excluded due to challenges in accurate segmentation, which may introduce selection
bias. Despite these constraints, the methodological approach employed here provides strong internal validation of
the primary findings.

Conclusion
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MR imaging-derived radiomic signatures offer a non-invasive, quantitative approach for distinguishing TCM
deficiency from excess syndromes in PCa, with the ADC-based model demonstrating superior diagnostic
performance. Future studies with larger, prospective cohorts are warranted to confirm these preliminary results.
Ultimately, radiomics may provide an objective, reproducible framework to support TCM syndrome classification
in clinical management of prostate cancer.
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