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ABSTRACT 

beat-to-beat tele-fetal monitoring and clinical data comparison using a wavelet transform approach Tele-fetal 

monitoring represents a significant advancement toward wearable medical devices for pregnant women, enabling 

comprehensive prenatal care from home. In this study, we implement a wavelet transform algorithm for fetal 

cardiac monitoring using a portable fetal Doppler device. After evaluating 85 different mother wavelets, the bio-

orthogonal 2.2 wavelet at decomposition level 4 was selected for optimal performance. The proposed method was 

validated using two datasets, including publicly available and clinical recordings. Analysis of PhysioBank data 

alongside simultaneous clinical measurements demonstrates that the fetal heart rates obtained with our algorithm 

closely match the reference values, achieving an accuracy exceeding 95%. These findings suggest that the 

proposed wavelet-based approach provides a reliable and effective method for tele-fetal monitoring, with strong 

potential for use in similar wearable prenatal care systems. 
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Introduction 

Gestation can result in a live birth, spontaneous miscarriage, induced abortion, or stillbirth [1]. Ensuring proper 

prenatal care and continuous monitoring throughout pregnancy is essential for improving birth outcomes [2]. 

Clinically, several medical technologies have been developed to monitor fetal heart rate (FHR) during gestation, 

including cardiotocography (CTG) [3], fetal magnetocardiography (fMCG) [4], fetal electrocardiography (fECG) 

[5], and fetal scalp electrocardiography (fsECG) [6]. 

Fetal scalp electrocardiography involves placing electrodes directly on the fetal scalp, providing high signal-to-

noise ratio (SNR) recordings. However, it is invasive, can only be used during labor, increases the risk of infection, 

and requires a skilled clinician for electrode placement [6]. 

Among non-invasive options, fMCG is recognized for its high SNR by recording the fetal heart’s magnetic field 

through SQUID (Superconducting Quantum Interference Device) sensors placed on the maternal abdomen. 

Despite its precision, this method is costly, requires a shielded environment, and needs expert operation [4]. 

Fetal ECG (fECG) provides a more affordable, non-invasive alternative for continuous fetal monitoring. 

Nevertheless, it typically suffers from low SNR, and proper electrode placement on the maternal abdomen 

demands professional expertise [5]. 

Cardiotocography (CTG) is a widely used non-invasive standard technique employing Doppler ultrasound to 

monitor both FHR and uterine contractions. While it offers high accuracy and requires less technical skill, it is 

highly sensitive to fetal movements [7–9]. 

Tele-fetal monitoring (TFM) represents a promising advancement, enabling pregnant women to receive prenatal 

care remotely. TFM has been shown to reduce risks associated with hypertensive disorders during pregnancy [10], 
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provide benefits for high-risk pregnancies such as gestational diabetes, and improve access to care for women 

living in remote areas far from medical facilities [11]. 

State of the arts 

Over the past decade, considerable research has focused on developing effective methods for remote fetal heart 

rate (fHR) extraction. One such approach is fetal heart sound (fHS) analysis, which is non-invasive, easy to apply, 

and cost-effective. However, fHS signals recorded from the maternal abdomen are highly susceptible to noise. 

Common sources of interference include fetal movements, uterine contractions, maternal digestive sounds, sensor 

displacement, ambient noise, maternal respiration, and maternal heart sounds [12]. 

The fundamental principle of fHS analysis is that the mechanical activity of the heart generates characteristic 

sounds associated with variations in blood flow and the opening and closing of heart valves [13]. For instance, 

Dia et al. estimated adult heart rate from phonocardiograph (PCG) signals by applying a non-negative matrix 

factorization (NMF) approach to the signal spectrogram and validated their results against synchronous ECG 

recordings [14]. Similarly, Samieinasab et al. [15] proposed a single-channel denoising framework for fetal PCG 

signals, followed by NMF decomposition in the time-frequency domain. Khandoker et al. developed a four-

channel fPCG system and evaluated it using fECG data over a 10-minute clinical dataset, reporting significant 

results (P < 0.01 in cross-correlation analysis and <5% agreement in Bland-Altman plots) [16]. 

Since signal denoising remains the most challenging step in fHR extraction from fHS signals, this study presents 

a wavelet transformation-based denoising algorithm. The main objective is to develop an algorithm capable of 

accurately extracting fHR from fetal heartbeat sounds, thereby supporting tele-fetal monitoring applications. 

In this study, we conducted a comprehensive investigation of 85 mother wavelets to identify the optimal approach 

for fHR extraction from experimental fHS signals. The wavelets included Daubechies (orders 1–45), Symlets 

(orders 1–20), Coiflets (orders 1–5), and Bioorthogonal wavelets (orders 1.1–6.8), tested across decomposition 

levels 1 to 12, resulting in a total of 1,020 configurations. The proposed methodology was implemented using a 

tele-monitoring ultrasound device—a pocket-sized portable Doppler system. Data were transmitted via a wired 

protocol and stored in a custom mobile application developed in-house, which incorporates the proposed 

algorithm. The long-term goal is to integrate the fHR extraction method into a mobile application for expectant 

mothers, as well as a cloud-based platform for gynecologists to monitor pregnancies remotely. 

The remainder of this paper is organized as follows: Section 2 describes the clinical measurement procedure, data 

acquisition, and the applied methods for fHR extraction, including detailed explanations of pre-processing and 

wavelet-based filtering. Section 3 presents the analysis, validation, and discussion of the results. Finally, Sections 

4 and 5 provide a discussion and conclusions, respectively. 

Clinical measurement, data acquisition and methods 

Clinical data were collected through simultaneous measurements using a portable (pocket-sized) ultrasound 

Doppler device and a standard CTG clinical system, as illustrated in Figure 1. The portable device employed in 

this study was the Baby Sound A pocket fetal Doppler from Contec Medical [17], marketed under the Baby Heart 

Beat brand by Sana Meditech. This device is certified with both CE and FDA medical approvals. For validation 

purposes, and to serve as a gold-standard reference, simultaneous measurements were performed using a clinical 

CTG system, specifically the Bionet FC-1400 model. 

 

 
Figure 1. Clinical simultaneous measurement using the Baby Sound A pocket fetal Doppler from Contec 

Medical [17] and a Bionet FC-1400 CTG clinical device. 
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Simultaneous measurements were performed to validate the data collected by the portable Doppler device and the 

associated fHR processing software as an alternative to the clinical CTG system. A total of 131 samples were 

collected from pregnant women aged between 19 and 43 years, with a mean age of 29 years. Each sample had a 

duration of at least one minute and was recorded at a sampling frequency of 8 kHz. 

Figure 2 provides a statistical overview of the captured clinical data. As shown in Figure 2a, 5% of the 

participants had high blood pressure, approximately 21% were diagnosed with gestational diabetes, and the 

remaining participants were classified as healthy. Figure 2b presents the pre-pregnancy Body Mass Index (BMI) 

distribution, ranging from a minimum of 17.44 to a maximum of 32.83, with a mean of 24.11 and a standard 

deviation of 4.0. The gestational age distribution is depicted in Figure 2c, showing that 69% of pregnancies 

reached full term at 40 weeks. Figure 2d illustrates the fetal sex distribution, with 52% male and 48% female. 

For completeness, a summary of the clinical data is provided in Table 1, including eligibility criteria for the study 

population. These clinical data were recorded to enable rigorous evaluation of the proposed algorithm and to 

facilitate continuous improvement during its development. 

 

  

a) b) 

  

c) d) 

Figure 2. Statistical distribution of the clinical data for pregnant participants. Shown are (a) the proportion of 

normal versus high-risk pregnancies, (b) pre-pregnancy Body Mass Index (BMI) of the participants, (c) 

gestational age in weeks, and (d) fetal sex distribution. 

 

Table 1. Summary of the clinical study population and eligibility criteria. 

Eligible Criteria 

Age (year) Type of pregnancy Gestation (week) Body Mass Index Anomaly 

from 18 to 50 singleton greater than 32 from 15 to 45 allowed 

 

The portable fetal monitoring device, Baby Heart Beat (Baby Sound A pocket fetal Doppler), was selected due to 

its superior quality, ergonomic design, and high audio fidelity compared to other similar portable devices. The 

device features an AUX port, enabling direct export of fetal heart sound (fHS) signals to external storage, such as 

a smartphone. The exported fHS signals are recorded and managed via a dedicated mobile application developed 

in-house by Sana Meditech. 

In this study, we propose a novel method for fHR extraction from recorded fHS signals, combining adaptive band-

pass filtering with wavelet transformation. The fetal heart sound signals, collected using the Doppler device from 

the maternal abdomen, exhibit a waveform as shown in Figure 3, where systolic and diastolic periods are 

indicated. The extraction of fHR is based on measuring the time interval between consecutive systolic peaks [18]. 
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The overall process for algorithm development is illustrated in the flowchart of Figure 4, which outlines the signal 

processing steps for fHR extraction from fHS signals. As shown, the algorithm begins with pre-processing, 

followed by identification of peaks corresponding to systolic events, and concludes with fHR extraction. A final 

smoothing step is then applied to refine the results. The following sections provide a detailed description of each 

major step depicted in the flowchart. 

 

 
Figure 3. Illustration of a single fetal heartbeat cycle captured by an ultrasound Doppler device, highlighting 

the systolic and diastolic phases and their timing relative to ECG signals. 

 

 
Figure 4. Flowchart illustrating the step-by-step procedure of the proposed algorithm for fetal heart rate 

extraction from fetal heart sound signals. 

 

Pre-processing: pre-development algorithm with simulated data 

For the development and initial testing of our algorithm, we utilized a simulated fetal heartbeat sound dataset 

provided by Cesarelli [19], which is publicly available on PhysioNet [20]. The dataset comprises 37 signals, each 

approximately 8 minutes in duration, sampled at 1 kHz. As noted by Cesarelli [19], the signals were generated 

with varying signal-to-noise ratios (SNRs) ranging from –26.7 dB to –4.4 dB to simulate environmental noise. 

Further details about this dataset are available in [20]. 

Fetal heart sound (fHS) signals recorded from the maternal abdomen are highly susceptible to noise, originating 

from fetal movements, uterine contractions, maternal abdominal sounds, sensor displacement, ambient noise, 

maternal respiration, and maternal heart sounds [12]. In this study, noise reduction was achieved using a wavelet 

transformation-based approach. 

 

Wavelet transformation 

The fundamental principle of Wavelet Transformation (WT) is to define a set of basis functions that can be 

stretched or compressed to capture both low- and high-frequency components of a signal. In this study, WT is 

employed for denoising and cleaning fetal heart sound signals. Mathematically, WT is a time-frequency analysis 

technique, and for an input signal x(t)x(t)x(t), it is defined as: 
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WTx(a,b)=∫−∞+∞x(t)ψa,b∗(t) dt,a≠0WT_{x}(a,b) = \int_{-\infty}^{+\infty} x(t) \psi_{a,b}^*(t) \, dt, 

\quad a \neq 0WTx(a,b)=∫−∞+∞x(t)ψa,b∗(t)dt,a =0  

(1) 

 

where the basic wavelet function ψa,b(t)\psi_{a,b}(t)ψa,b(t) is characterized by scale (aaa) and time-shift (bbb) 

parameters: 

 

ψa,b(t)=1aψ(t−ba)\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)ψa,b(t)=a1ψ(at−b)  (2) 

 

This function ψa,b(t)\psi_{a,b}(t)ψa,b(t) is also used for signal decomposition. A key challenge in applying WT 

for denoising lies in selecting the optimal mother wavelet for the specific application. To systematically determine 

the most suitable mother wavelet, several properties are considered, including vanishing moments, support size, 

regularity, orthogonality, biorthogonality, energy distribution, symmetry, and suitability for discrete signal 

implementation [21, 22]. 

Table 2 provides a summary of the 14 different families of mother wavelets investigated in this study. The 

following section details the procedure for selecting the optimal mother wavelet for fetal heart sound signal 

denoising. 

 

Table 2. A Summary of Different Mother Wavelets' Properties. 

Mother Wavelet 
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HAAR ✓ 1 × ✓ ✓ ✓ ✓ ✓ ✓ [23] 

Daubechies ✓ N 0.2N ✓ ✓ × ✓ ✓ ✓ [23] 

Symlets ✓ N - ✓ ✓ near ✓ ✓ ✓ [23] 

Coiflets ✓ 2N - ✓ ✓ near ✓ ✓ ✓ [23] 

Biorthogonal ✓ Nr Nr-1 × ✓ ✓ ✓ ✓ ✓ [23] 

Fejer-Korovkin ✓ N - ✓ × × ✓ ✓ ✓ [24, 25] 

Meyers × N inf ✓ ✓ ✓ ✓ ⁎ ✓ [23] 

Gaussian × - - × × ⁎⁎ × × ✓ [26] 

Mexican hat × 2 - × × ✓ × × ✓ [23, 27] 

Morlet × - - × × ✓ × × ✓ [23] 

Complex Gaussian × - - × × ⁎⁎ × × ✓ [26] 

Shannon × N - × × ✓ × × ✓ [28] 

Freq. B-Spline × - - × × ✓ × × ✓ [28] 

Complex Morlet × - - × × ✓ × × ✓ [28] 

* Fast wavelet transform implementation is possible, but not available for this case. 

** These wavelets exhibit symmetry when their order is an even number. 

 

Mother wavelet selection 

The procedure for selecting the most suitable mother wavelet is based on evaluating each wavelet’s properties 

(Table 2). Initially, wavelets that are not suitable for fetal heart sound (fHS) denoising are excluded. For example, 

wavelets that do not preserve signal energy, such as non-orthogonal types—including Gaussian, Mexican Hat, 

Morlet, Complex Gaussian, Shannon, Frequency B-Spline, and Complex Morlet—are discarded. Additionally, 

wavelets must support discrete wavelet transform; thus, the Meyer family, which cannot perform fast WT for 

discrete signals, is also excluded. 

Wavelets with moderate complexity and a minimum number of vanishing moments are preferred, as these can 

represent complex functions with fewer coefficients [29]. Based on these criteria, Daubechies, Symlets, Coiflets, 

and Biorthogonal wavelets were selected for investigation. Specifically, the study considered 85 wavelets: db1–

db45, sym1–sym20, coif1–coif5, and bior1.1–bior6.8. 

To identify the optimal wavelet, two key metrics were used: energy and entropy. Energy measures the similarity 

between the signal and the wavelet. The energy of detail coefficients at level jjj is defined as: 
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Ej=∑k∣Cj(k)∣2E_j = \sum_{k} |C_j(k)|^2Ej=k∑∣Cj(k)∣2  (3) 

 

where Cj(k)C_j(k)Cj(k) represents the wavelet coefficients at level jjj. The total energy is then given by: 

 

Etot=∑jEjE_\text{tot} = \sum_j E_jEtot=j∑Ej  (4) 

 

The relative wavelet energy, which assesses similarity between different signal segments, is defined as: 

 

pj=EjEtotp_j = \frac{E_j}{E_\text{tot}}pj=EtotEj  (5) 

 

Entropy quantifies the accuracy of signal reconstruction and the information lost due to the chosen wavelet: 

0 

H(j)=−∑jpj2log⁡(pj2)H(j) = - \sum_j p_j^2 \log(p_j^2)H(j)=−j∑pj2log(pj2)  (6) 

 

The ratio of relative wavelet energy to entropy (RWEER) provides a measure of how closely a wavelet resembles 

the original signal: 

 

RWEER(j)=E(j)H(j)\text{RWEER}(j) = \frac{E(j)}{H(j)}RWEER(j)=H(j)E(j) (7) 

 

In this study, RWEER was computed up to level j=12j = 12j=12 using 215 abdominal fHS segments for all 85 

mother wavelets. The first row of Figure 5 shows that the highest RWEER occurs at level 4; hence, this 

decomposition level was chosen. RWEER was then calculated at level 4 to determine the optimal mother wavelet. 

The bottom of Figure 5 presents a boxplot of the RWEER distribution across all 215 segments for each wavelet. 

The red dashed line indicates execution time, while the black dashed line represents the ratio of mean to standard 

deviation of RWEER. Wavelet numbers on the x-axis correspond to Daubechies (1–45), Symlets (46–65), Coiflets 

(66–70), and Biorthogonal (71–85). 

Based on this analysis, Biorthogonal 2.2 (bior2.2, wavelet number 74) was selected for fHS denoising, as it 

exhibited the highest mean-to-standard deviation ratio, consistent repeatability across segments, and low 

computational time. 

 

 
a) 

 

b) 

Figure 5. Distribution of RWEER for 85 mother wavelets, including Daubechies (db1–db45), Symlets 

(sym1–sym20), Coiflets (coif1–coif5), and Biorthogonal (bior1.1–bior6.8). a)Top row: Effect of wavelet 

decomposition levels on the maximum RWEER, indicating that level j=4j = 4j=4 yields the highest values. 

b)Bottom row: RWEER for 215 fHS sections at level j=4j = 4j=4 across different mother wavelets. The red 
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dash-dot line represents the algorithm’s execution time for each wavelet, while the black dash-dot line shows 

the mean-to-standard deviation ratio of RWEER for all sections. Outliers are marked with red plus symbols. 

 

Based on this analysis, all fHS signal decomposition, denoising, and reconstruction in this study were performed 

using Biorthogonal 2.2 (bior2.2) with 4 levels of decomposition. An example comparing a noisy fHS signal to its 

denoised version is shown in Figure 6. Figure 6a displays a 1-second segment of the original fHS signal, Figure 

6b shows the denoised signal obtained using the proposed method, and Figure 6c illustrates the extracted systolic 

(S) peaks. 

 

  

a) b) 

 

c) 

Figure 6.Example of an fHS signal before and after denoising. (a) One-second segment of the original fHS 

signal, (b) the denoised signal obtained using the proposed wavelet-based filtering method, and (c) the 

extracted S-peaks. In (c), the red curve represents the computed envelope, red markers indicate all detected 

local maxima, and green markers highlight the selected S-peaks. 

 

Systole extraction 

The identification of systolic peaks is a key step in estimating the fetal heart rate (fHR), as illustrated in Figure 

3. In fetal heart sound (fHS) recordings, the temporal gap between systole (S) and diastole (D) is significantly 

shorter than in adult cardiac cycles. Given that diastole typically lasts longer than systole, a diastolic peak 

generally appears at least 100 ms after the preceding S and no more than 200 ms before the next S [30]. Based on 

this physiological constraint, the extraction strategy involves two stages: first detecting all potential peaks (both 

S and D), and then isolating the true systolic peaks. 

To identify every candidate peak, the signal is processed by computing its envelope followed by detection of local 

maxima. As illustrated in Figure 6, these maxima represent possible S–D events. The subsequent selection of true 

S-peaks relies on expected fetal cardiac cycle durations: a normal cycle is approximately 430 ms, with a typical 

range of 375–545 ms [31]. Accordingly, a threshold-based decision rule is applied to determine which of the 

detected candidates correspond to systole. These selected systolic peaks are then used for fHR computation. An 

example outcome is shown in Figure 6c, where the envelope is plotted in red, all detected candidates appear as 

red markers, and the final chosen S-peaks are highlighted in green. 

 

fHR cardiograph visualization 

Since the interval between two consecutive systolic peaks (S–S interval) in an fHS signal reflects the combined 

duration of systole and diastole [32], the fetal heart rate can be derived using Eq. (8): 

 

fHR (bpm)=60Tss (sec)(8)\text{fHR (bpm)} = \frac{60}{T_{ss} \, (\text{sec})} \tag{8}fHR (bpm)=Tss

(sec)60( 

(8) 
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where TssT_{ss}Tss denotes the time difference between successive systolic peaks, and the resulting fHR is 

expressed in beats per minute (bpm). 

To generate a clinically meaningful and easy-to-read fHR trace, additional smoothing procedures are applied. 

Beat-to-beat fHR estimates may occasionally exhibit abrupt fluctuations due to noise, motion artifacts, or transient 

signal loss. To mitigate these effects, we reduce high- and low-frequency noise components and correct outliers 

using a dedicated correction algorithm. These refinements are intended solely for visualization in the cardiograph 

to avoid presenting unnecessarily erratic trends that may cause concern for end users. 

In constructing the cardiograph, we also preserve continuity of the displayed fHR values. When brief signal 

dropouts occur, the nearest valid fHR measurement obtained from the clinical reference device is retained to avoid 

artificial gaps in the display. 

To further stabilize the plotted fHR curve, smoothing methods such as moving median and moving average filters 

are employed. These approaches help reduce variability arising from spontaneous fetal movements or residual 

artifacts, resulting in a more coherent and interpretable cardiograph signal. 

Analysis and validation of results 

The analysis and validation procedures in this work were conducted on a personal computer using MATLAB 

R2020a, and consisted of two primary experimental stages. In the first stage, we employed a publicly available 

simulated fetal heart sound (fHS) dataset [19] to develop and test the algorithm. This dataset includes 37 synthetic 

fetal phonocardiogram (fPCG) recordings, each lasting at least eight minutes and sampled at 1 kHz. 

To assess the accuracy of the proposed method, we compared the algorithm-derived beat-to-beat fHR values with 

the reference (baseline) heart rates provided in the dataset. Performance evaluation was carried out using beat-to-

beat correlation analysis and Bland–Altman assessment [33], enabling a quantitative comparison of agreement 

between the estimated and reference fHR values. 

 

Analysis over simulated data 

To begin, we evaluated the performance and accuracy of the algorithm using a single fHS recording approximately 

eight minutes in duration. Figure 7 presents the resulting cross-correlation analysis along with the Bland–Altman 

assessment, a standard statistical method for examining agreement between two paired measurements on the same 

scale. As shown, the computed p-value is <0.0001, indicating strong statistical significance since it is well below 

the conventional 0.05 threshold. A 95% confidence interval was applied in this analysis, and the signal-to-noise 

ratio (SNR) for the examined recording is noted in the figure caption. 

 

 
Figure 7. shows the results for a single simulated recording of approximately eight minutes. The left panel 

illustrates the beat-to-beat cross-correlation between the algorithm-derived fHR and the reference signal, 

while the right panel presents the corresponding Bland–Altman analysis. For this example, the SNR is −26.7 

dB, and the p-value is <0.0001, confirming strong statistical significance in the agreement between the two 

measurements. 

 

In the second stage of evaluation, we assessed the algorithm’s performance across all 37 simulated signals to 

determine overall accuracy and robustness. Using a 95% confidence interval, the average p-value across the 
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dataset was <0.0008, indicating consistently significant agreement with the reference values (Figure 8). 

Additionally, the mean root-mean-square error (RMSE) across all signals was 2.74 bpm. Figure 8 summarizes 

these results, displaying a detailed performance breakdown for each individual simulated recording. 

 

 
Figure 8. presents the statistical evaluation of the algorithm across the full set of simulated recordings. The 

overall performance is highly consistent, with an average p-value of <0.0008. The left panel displays the root 

mean square error (RMSE) for each signal, while the right panel illustrates the mean difference and standard 

deviation between the algorithm-estimated fHR and the baseline reference values. 

 

The average accuracy of the algorithm is computed according to: 

 

Average Accuracy=1NT∑i=1K(NEi60)\text{Average Accuracy} = \frac{1}{N_T} \sum_{i=1}^{K} \left( 

\frac{NE_i}{60} \right)Average Accuracy=NT1i=1∑K(60NEi)  

(9) 

 

where NTN_TNT denotes the total number of samples and NEiNE_iNEi represents the number of correctly 

estimated beats for the iii-th recording. 

 

Analysis over clinical data 

The proposed algorithm is subsequently evaluated and fine-tuned using the clinical dataset collected through 

simultaneous measurements from the portable fetal Doppler and a clinical-grade CTG device. For this validation, 

the Baby Heart Beat (Baby Sound A) portable Doppler is used to acquire fHS signals, which are recorded through 

the accompanying mobile application. In parallel, a Bionet FC-1400 clinical monitor records the reference fetal 

heart rate. The clinical device exports the fHR trace as an image (Figure 9a), in which the y-axis represents heart 

rate in beats per minute (bpm) and the x-axis indicates time in seconds. Each grid cell corresponds to 10 bpm 

vertically and 10 seconds horizontally. 

To obtain the reference fHR numerically, image-processing routines implemented in MATLAB are applied to 

extract the clinical fHR curve from the exported image (Figure 9b and 9c). According to clinical standards [34], 

an algorithm-derived fHR value is considered acceptable if it lies within ±7 bpm of the value reported by the 

validated clinical device. This acceptance band is highlighted in Figure 9d (green region). After defining this 

confidence interval for the baseline measurement, the fHR estimated by our algorithm is superimposed onto the 

clinical signal (Figure 9e) to assess agreement and quantify the error rate. 
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a) b) c) 

  

d) e) 

Figure 9. illustrates how image-processing techniques are employed to validate the proposed algorithm. (a) 

The original fHR trace exported from the clinical device. (b, c) Extraction of the clinical fHR curve using 

MATLAB-based processing. (d) Definition of the medical acceptance interval (±7 bpm).  (e) 

Superimposition of the algorithm-generated fHR (shown in red) for comparison. 

 

Figure 10 presents an additional example in which discrepancies between the algorithm output and the clinical 

reference are highlighted with red arrows, demonstrating how these detected errors guide further refinement and 

optimization of the algorithm’s performance. 

 

 
Figure 10. presents an example comparing the algorithm-generated fHR trace (red) with the clinical 

reference signal (black). The green band indicates the accepted confidence interval (±7 bpm), and the 

detected outliers are marked with red arrows. 
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In this study, each clinical recording used for validation has a duration of at least one minute. To assess the 

performance of the proposed algorithm, the average accuracy is computed using Eq. (9). Let NEiNE_iNEi denote 

the number of errors in the i-th signal, with each signal spanning 60 seconds, and let NTN_TNT be the total dataset 

duration. With 131 clinical samples, NT=7860N_T = 7860NT=7860 seconds (131 × 60). Across all 

measurements, only 390 errors were detected, corresponding to an overall accuracy of 95.03% and an error rate 

of 4.96%. 

Figure 11a illustrates the distribution of median fHR values alongside the associated error rates. To further 

characterize variability within each measurement, Figure 11b provides the quantile distribution of fHR values 

using a boxplot, which visualizes beat-to-beat fluctuations and the statistical characteristics of each clinical 

sample. 

 

 
a) 

 
b) 

Figure 11 presents the error analysis for each clinical sample. (a) The orange line indicates the percentage of 

errors per sample, while the purple bars show the distribution of median fHR values in bpm.  (b) The boxplot 

illustrates the quantile distribution of fHR measurements, highlighting variability within each recording. 

 

It should be noted that elevated error rates in certain samples are primarily due to missing data points from the 

clinical device, which is a common limitation. In these cases, our algorithm often outperforms the standard clinical 

system. With further refinement and the incorporation of additional clinical datasets, we anticipate that this 

algorithm could form the basis of a highly advanced fetal monitoring solution. 
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Results and Discussion 

To evaluate the performance of the proposed algorithm relative to existing approaches, several commonly used 

wavelet families—including db1, db5, db6, sym1, sym7, coif2, and coif4—were selected for comparison. The 

analysis was conducted using all 37 signals from the simulated dataset. fHR extraction accuracy was computed 

following denoising with each wavelet, and the results are summarized in Figure 12. The figure demonstrates that 

the proposed method achieves superior performance in the majority of cases compared to the alternative wavelet-

based approaches. 

 

 
Figure 12. presents a comparison of the proposed algorithm with previously reported methods [35, 36]. 

 

Fetal heart sound (fHS) signals are often highly noisy due to multiple sources, including maternal and fetal activity 

as well as environmental factors. Effective denoising is therefore critical for accurate fetal heart rate (fHR) 

extraction. In this study, we conducted a comprehensive investigation of fHS denoising using wavelet 

transformation techniques. We evaluated 1020 configurations covering four mother wavelet families: Daubechies 

(orders 1–45), Coiflets (orders 1–5), Symlets (orders 1–20), and Biorthogonal (orders 1.1–6.8), across 

decomposition levels 2–12. 

Additionally, over 131 minutes of clinical data were collected from 131 pregnant women, encompassing a wide 

range of BMIs, gestational weeks, and risk factors such as diabetes and hypertension. The results demonstrate that 

the proposed algorithm performs robustly in real-world clinical settings. Furthermore, the algorithm is embedded 

in software connected to a pocket-size Doppler device, enabling remote monitoring of high-risk pregnancies and 

potentially reducing the clinical workload for healthcare providers. 

Conclusion 

Fetal heart sound (fHS) signals are typically low in amplitude and often obscured by high-amplitude noise 

originating from maternal respiration, fetal movements, and other environmental sources. In this study, we 

developed an algorithm to estimate fetal heart rate (fHR) from fHS recordings. The process begins with wavelet-

based denoising during the pre-processing stage, followed by the extraction of systolic and diastolic peaks using 

a combination of signal enveloping and local maxima detection. True systolic peaks are then selected based on 

the temporal relationship between systolic and diastolic events, and fHR is computed from the intervals between 

consecutive systolic peaks. 

Evaluation against both simulated and clinical datasets demonstrates that the proposed method provides accurate 

and reliable fHR estimation. Looking forward, by acquiring more extensive annotated datasets, including 

recordings with abnormal cardiac patterns, this framework could be extended to support fetal anomaly detection 

using advanced machine learning techniques. 
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