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ABSTRACT 

Due to the rising incidence of diabetes mellitus and the drawbacks of existing therapies, there is an urgent demand 

for new therapeutic agents targeting this condition. This research concentrates on developing novel compounds 

with potent alpha-glucosidase inhibitory activity, a key enzyme in managing diabetes. A series of 33 triazole 

derivatives was subjected to comprehensive QSAR analysis to determine the critical factors affecting their α-

glucosidase inhibitory potency. Based on the multiple linear regression (MLR) model, seven potential drug 

candidates were designed. Molecular docking and dynamics simulations were performed to elucidate the 

interaction mechanisms between the ligands and the target enzyme, as well as the stability of the resulting 

complexes. In addition, the pharmacokinetic profiles of these designed compounds were evaluated to forecast 

their in vivo behavior. Binding free energies were computed using the MMGBSA method, indicating favorable 

thermodynamic characteristics. The findings identified three new compounds exhibiting high biological activity, 

strong binding affinity to the target enzyme, and good oral bioavailability. These outcomes provide promising 

opportunities for developing effective and well-tolerated antidiabetic drugs.   
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Introduction 

Diabetes mellitus (DM) is a chronic metabolic condition marked by hyperglycemia resulting from impaired insulin 

action, insufficient insulin production, or a combination of both [1]. Persistent hyperglycemia exacerbates the 

complications of diabetes mellitus, promoting various macrovascular issues such as peripheral and autonomic 

neuropathy, heightened risk of atherosclerosis, cerebrovascular disorders, neuropathy, nephropathy, and 

retinopathy [2].   

The primary characteristics of diabetes mellitus (DM) are often accompanied by symptoms like polyuria, 

polyphagia, weight loss, and blurred vision.   

As reported by the IDF Diabetes Atlas (International Diabetes Federation), approximately 436 million individuals 

globally were living with diabetes in 2021, with projections suggesting this figure could rise to 700 million by 

2045 [3, 4].   

The development of diabetes mellitus is associated with multiple lifestyle risk factors, including smoking, 

excessive alcohol intake, sedentary behavior, and comorbidities such as dyslipidemia and hypertension. Genetic 

factors, stress, and obesity also play significant roles in increasing susceptibility [5], whereas enzymes like alpha-

glucosidase and amylase facilitate the breakdown of carbohydrates into glucose and maltose, thereby elevating 

blood glucose levels, leading to hyperglycemia and interfering with normal insulin function [2].   

Simultaneous inhibition of α-glucosidase and α-amylase represents the preferred approach for mitigating the long-

term consequences of type 2 diabetes [6]. α-Glucosidase, a major carbohydrate-digesting enzyme located in the 

intestinal brush border, converts complex oligosaccharides into absorbable monosaccharides [7].   
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By slowing carbohydrate absorption in the small intestine, alpha-glucosidase inhibitors enable the pancreas to 

secrete insulin in a more regulated manner. Their antihyperglycemic action is moderate, as they do not stimulate 

insulin release directly but instead hinder alpha-glucosidase-mediated digestion of complex carbohydrates. 

Nevertheless, currently available alpha-glucosidase inhibitors, including Miglitol, Acarbose, and Voglibose, are 

linked to several unwanted side effects, such as nausea, abdominal distension, and flatulence [8, 9].   

The diverse biological properties of 1,2,4-triazoles and their fused heterocyclic analogs have drawn considerable 

interest from both academic and industrial researchers, making them a prominent class among nitrogen-containing 

heterocycles [10]. Several approved drugs with therapeutic importance contain the 1,2,4-triazole scaffold, 

including Sitagliptin, Voriconazole, and Fluconazole [11, 12].   

A triazole is a five-membered heterocyclic ring comprising three nitrogen atoms and two carbon atoms linked by 

alternating π-bonds, with the molecular formula C2H3N3. Triazoles exhibit pharmacological features such as 

moderate dipole moment, hydrogen-bonding capability, ion–dipole interactions, π–π stacking, cation–π 

interactions, hydrophobic interactions, van der Waals forces, rigidity, and metabolic stability [13].   

In 2020, Emmanuel Oloruntoba Yeye et al. synthesized various 1,2,4-triazole derivatives and determined their 

IC50 values through experimental testing [14]. The primary goal of the present study is to identify novel 1,2,4-

triazole-based compounds with potent α-glucosidase inhibitory activity. Specifically, a 2D-QSAR analysis was 

conducted on these derivatives to develop predictive models for designing new triazole compounds and estimating 

their biological activities prior to synthesis [15, 16]. 

Materials and Methods  

A collection of 33 substituted 1,2,4-triazole derivatives was obtained from an earlier publication [14]. These 

molecules demonstrated moderate to high inhibitory activity toward α-glucosidase, with their IC₅₀ values 

converted to pIC₅₀ (−log IC₅₀) for QSAR development, as detailed in Table 1. The chemical structures of these 

derivatives were constructed and geometry-optimized using the MMFF94 force field in Chem3D version 

19.0.0.22 [17]. 

Table 1. Two-dimensional structures of the 33 triazole derivatives along with their corresponding pIC₅₀ values 

against alpha-glucosidase. 
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 Molecular descriptor computation and pruning 

Molecular descriptors were generated for all compounds with the PaDEL software [18]. Since PaDEL computes 

more than 800 descriptors per molecule, a selection process was necessary to retain only relevant features. The 

objective feature selection tool in QSARINS software was applied for this purpose [19]. Descriptors showing high 

pairwise correlation (|r| > 0.90) or near-constant values (>95%) were removed to eliminate multicollinearity and 

irrelevant variables in subsequent GA-MLR modeling. Following pruning, a final set of 433 descriptors covering 

1D and 2D categories was kept [20, 21]. 

 

QSAR model construction and validation 

QSAR models were developed using QSARINS software, which is recognized for generating robust genetic 

algorithm-multiple linear regression (GA-MLR) models. The dataset was randomly partitioned into training 

(80%) and test (20%) sets via the software’s random split function [22, 23]. This established approach allows 

model training on one subset and evaluation on an independent group [24]. 

The strategy focused on incorporating the optimal number of descriptors that significantly influence biological 

activity to maximize model performance [25]. Descriptors served as independent variables to predict activity 

according to Eq. 1: 

 

Y = a₀ + a₁X₁ + a₂X₂ (1) 

 

Models were rigorously validated internally and externally, including Y-randomization and applicability domain 

assessment, in line with OECD principles [26, 27]. Performance was evaluated using multiple statistical metrics 

to identify the optimal model, including adjusted R² (R²_adj), external R² (R²_test), root-mean-square error 

(RMSE), and determination coefficient (R²). The leave-one-out cross-validation coefficient (Q²_LOO) was 

employed as the fitness criterion. Values exceeding 0.6 for these parameters generally indicate reliable and robust 

models [28-30]. 

The applicability domain (AD) was defined via leverage analysis presented as a Williams plot, plotting 

standardized residuals against leverage values. The critical leverage threshold was calculated as h* = 3(k + 1)/n, 

where n is the number of training compounds and k is the number of descriptors. Compounds within this domain 

are considered suitable for reliable predictions [31, 32]. 

 

Molecular docking 

Molecular docking was employed to identify preferred binding poses of the ligands within the target active site, 

along with binding affinities and specific residue interactions [33]. 

The protein structure was downloaded from the Protein Data Bank with PDB ID 2f6d [34], representing the 

glucoamylase from Saccharomycopsis fibuligera complexed with Acarbose. This structure was selected due to its 

similarity to alpha-glucosidase inhibition by Acarbose, combined with high resolution (1.60 Å, below 2 Å). The 

receptor consists of 492 residues in Chain A (glucoamylase) (Figure 1a). Heteroatoms including alpha-acarbose, 

phosphate, and sodium ions were removed prior to docking [34]. 

 

  

a) b) 

Figure 1. (a) Three-dimensional structure of the 2f6d receptor; (b) active site location in the 2f6d receptor. 
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Protein preparation involved energy minimization with Swiss-PDB Viewer [35], addition of polar hydrogens, and 

assignment of Gasteiger charges using AutoDock Vina [36-38]. Water molecules present in the binding pocket 

were retained to allow potential bridging interactions with ligands. Ligands were energy-minimized under the 

MMFF94 force field using Avogadro software [39] to achieve optimal conformations. 

The docking grid was centered on the co-crystallized Acarbose position, a known alpha-glucosidase inhibitor used 

as reference [40]. Grid coordinates were set at x = 12.68 Å, y = 10.80 Å, z = −6.35 Å, with dimensions of 20 Å³ 

and spacing of 0.375 Å (Figure 1b). 

Docking was performed in five independent runs for reproducibility. Final ligand poses were chosen based on 

cluster frequency across runs. All selected poses appeared consistently in every run, confirming their reliability. 

Figure 2 illustrates the occurrence frequency of the resulting conformations across the runs. 

 

 
Figure 2. Occurrence frequency of each docking pose across five separate runs. 

 

To validate the docking procedure, the co-crystallized ligand (Acarbose) was first redocked into the receptor's 

binding pocket [8]. All newly designed compounds were then docked using AutoDock tools [41], allowing 

detailed examination of possible interactions and calculation of binding affinities within the receptor's active site. 

Docking was carried out over 9 independent runs, and the pose from the run exhibiting the lowest binding 

energy—with an RMSD of 0—was chosen for further evaluation [42]. The computed RMSD of 0.217 Å (well 

below 2 Å) demonstrates close overlap between the original and redocked Acarbose poses (Figure 3). This low 

deviation confirms the accuracy and reproducibility of the docking methodology in recreating the native binding 

orientation of the reference inhibitor [43]. 

 

 
Figure 3. Superimposition of the redocked ligand (yellow) onto the co-crystallized ligand (grey), highlighting 

strong conformational agreement and validating the docking protocol. 

 

ADMET analysis 

Compounds displaying high pIC₅₀ values against alpha-glucosidase were evaluated for ADMET characteristics to 

better understand their pharmacokinetic and safety profiles, encompassing absorption, distribution, metabolism, 
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excretion, and toxicity [44, 45]. Predictions were performed using the widely adopted pkCSM web server, which 

models compound behavior in vivo. 

Compliance with Lipinski's rule of five was checked to filter out unsuitable candidates, requiring molecular weight 

below 500 g/mol, ≤5 hydrogen bond donors, ≤10 hydrogen bond acceptors, and LogP ≤5 [46]. Additional 

parameters—including Caco-2 permeability, human intestinal absorption, and steady-state volume of distribution 

(VDss)—were computed to assess overall drug-likeness and potential performance in the body [46]. 

 

Molecular dynamics (MD) simulation 

Top-performing compounds—selected based on superior docking scores, highest inhibitory activity, and 

favorable ADMET profiles—underwent molecular dynamics simulations to monitor structural dynamics via 

metrics such as Root-Mean-Squared Deviation (RMSD) and Root-Mean-Squared Fluctuation (RMSF). Resulting 

protein–ligand contacts were analyzed to explain observed stability or conformational changes [47, 48]. 

Complexes were prepared, energy-minimized, and refined using the OPLS3e force field [49] through the Protein 

Preparation Wizard in Maestro software [50]. The system was solvated in an orthorhombic box with the TIP3P 

water model [51]. Na⁺ and Cl⁻ ions were added to neutralize charges, and physiological salt concentration was set 

to 0.15 M. The system was gradually heated to 300 K at 1 bar pressure employing the Nose–Hoover thermostat 

and Martyna–Tobias–Klein barostat [52]. Simulations were run for 100 ns under the NPT ensemble with regular 

trajectory recording, utilizing the Desmond module within Schrödinger 2020-3 academic release [53]. 

Binding free energies of the simulated complexes were estimated via the Molecular Mechanics/Generalized Born 

Surface Area (MM/GBSA) method implemented in Maestro. This approach provides valuable thermodynamic 

insights into ligand–protein binding energetics during dynamics trajectories and enables efficient ranking of 

interaction strength [54]. 

Results and Discussion 

QSAR model analysis and validation in line with OECD guidelines   

Through the application of the GA-MLR technique, multiple predictive models were developed, each 

incorporating between 4 and 6 descriptors. The most suitable model was identified based on superior statistical 

metrics that demonstrate its reliability, predictive accuracy, and stability. This optimal model, which utilizes the 

descriptors AATSC8s, VE3_Dzs, nHsOH, CIC1, and RotBFrac (Tables 2 and 3), fulfilled every validation 

standard. Key metrics comprised the leave-one-out cross-validation correlation coefficient (Q²LOO = 0.633), the 

determination coefficient (R² = 0.767), the root-mean-square error (RMSE = 0.082), the adjusted determination 

coefficient (R²adj = 0.712), and the determination coefficient for the external test set (R²test = 0.649).   

 

Table 2. The GA-MLR-based model and its associated statistical performance indicators. 

Description Value 

QSAR Model Equation 
pIC₅₀ = 6.403 + 0.759 AATSC8s + 0.022 VE3_Dzs − 0.112 

nHsOH − 0.338 CIC1 − 1.804 RotBFrac 

Total number of compounds 33 

Compounds in training set 27 

Compounds in test set 6 

Model fitting performance  

Coefficient of determination (R²) 0.767 

Adjusted R² (R²_adj) 0.712 

Root mean square error (RMSE) 0.082 

Internal validation  

Leave-one-out cross-validation (Q²_LOO) 0.649 

External validation  

External R² (R²_ext) 0.633 

Randomization test parameters  

Difference R² − R²_adj 0.055 

Average R (random models) 0.428 

Average R² (random models) 0.196 

Average Q² (random models) −0.342 
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cRp² (randomization R²) 0.669 

 

Table 3. Interpretation of the molecular descriptors employed in the selected model. 

Descriptor 

Symbol 
Name of Descriptor References 

AATSC8s Average centered Broto-Moreau autocorrelation at lag 8, weighted by I-state [55] 

VE3_Dzs 
Logarithmic coefficient sum of the last eigenvector from the Barysz matrix, weighted by I-

state 
[56] 

nHsOH Number of atom-type H E-State values corresponding to hydroxyl groups (-OH) [57] 

CIC1 Complementary information content (neighborhood symmetry of 1-order) [58] 

RotBFrac Proportion of rotatable bonds, not including terminal ones [59] 

 

Outcomes from the Y-randomization procedure confirmed that no randomized model approached the performance 

of the original one, as evidenced in Table 2. The markedly reduced R² and Q² values in randomized runs, together 

with their mean values (R²YS = 0.195 and Q²YS = −0.341), verify that the QSAR model does not rely on spurious 

correlations.   

The applicability domain (AD) was defined to outline the chemical space covered by the dataset and to evaluate 

the reliability of predictions according to structural similarity with the training set molecules. To achieve this, a 

Williams plot was generated, incorporating a cutoff of three standard deviations and leverage values not exceeding 

the warning threshold. Accordingly, QSAR predictions are deemed trustworthy solely for compounds situated 

inside this AD. Assessment indicated that no outliers were present in the response values for either training or test 

sets. Every compound displayed a leverage below the critical value of h* = 0.667 (Figure 4), with standardized 

residuals confined within ±3 standard deviations [14].   

 

 
Figure 4. Williams plot for the selected model. 

 

Development of new compounds   

An earlier work conducted by Emmanuel Oloruntoba Yeye et al. examined the α-glucosidase inhibitory effects 

of 33 synthesized molecules. Their data revealed that compounds 14, 16, 20, 21, 25, 27, 28, and 33 possessed 

inhibitory strength on par with the reference agent Acarbose. Common structural features among these potent 

molecules included halogen atoms, amino functionalities, and/or nitro substituents.   
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Derivatives containing nitro, amino, or halogen moieties generally exhibited superior inhibition, in contrast to 

those bearing hydroxy groups, which displayed diminished activity.   

Leveraging the validated QSAR model alongside these observations, the present research sought to engineer 

improved inhibitors of α-glucosidase. The target was to obtain predicted pIC50 values exceeding those of the top-

performing compounds from the initial dataset.   

Modifications emphasized the introduction of nitro and halogen groups to elevate AATSC8s and VE3_Dzs 

descriptor values, while deliberately excluding hydroxy substituents owing to their detrimental influence on 

potency. Concurrently, adjustments were implemented to reduce nHsOH, CIC1, and RotBFrac values. By 

implementing these guided modifications on the triazole framework, seven promising new structures were 

proposed, as illustrated in Table 4. Relative to the leading compound from the original set (Table 5), all newly 

designed molecules demonstrated superior predicted pIC50 values.   

 

Table 4. Two-dimensional structures of the newly proposed compounds derived from the model. 

 
 

Table 5. Descriptor values for the model in the original synthesized compounds and the proposed new 

compounds, including predicted pIC50 and leverage data. 

Name N° VE3_Dzs AATSC8s nHsOH pIC50 CIC1 RotBFrac hi 

Synthetized Compounds 

1 * −3.819 −0.006 1 5.582 1.439 0.133 

h* = 0.667 

2 * −6.599 −0.010 2 5.264 1.316 0.125 

3 −7.797 0.037 2 5.264 1.316 0.125 

4 −8.587 −0.010 2 5.270 1.316 0.125 

5 −5.287 −0.075 3 5.241 1.328 0.118 

6 −7.498 0.064 0 5.369 1.578 0.222 

7 * −6.004 0.043 0 5.367 1.578 0.222 

8 * −4.740 0.184 0 5.263 1.830 0.250 

9 −5.434 0.131 0 5.271 1.633 0.263 

10 −7.007 0.122 0 5.262 1.633 0.263 

11 −3.355 −0.174 0 5.369 1.621 0.125 

12 * −1.724 −0.169 0 5.196 1.968 0.167 

13 −2.264 −0.128 0 5.368 1.507 0.133 

14 −2.531 −0.128 0 5.604 1.346 0.125 

15 −7.233 −0.127 0 5.270 1.376 0.177 

16 −4.375 0.044 0 5.607 1.376 0.177 

17 −2.618 −0.074 1 5.198 2.214 0.182 

18 * −7.781 0.032 1 5.276 1.193 0.176 
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19 −4.965 0.256 1 5.485 1.396 0.211 

20 −5.270 0.220 0 5.599 1.349 0.211 

21 −2.950 −0.004 1 5.625 1.103 0.125 

22 −6.069 −0.021 1 5.599 0.937 0.167 

23 −3.622 −0.103 0 5.461 1.161 0.176 

24 −5.284 0.012 0 5.633 1.161 0.176 

25 −6.839 −0.010 0 5.644 1.161 0.176 

26 −9.690 −0.127 0 5.359 1.055 0.167 

27 −6.929 −0.030 1 5.636 1.011 0.167 

28 −4.901 −0.080 0 5.613 1.069 0.133 

29 −3.755 0.001 0 5.264 2.216 0.217 

30 −3.692 −0.037 0 5.184 2.094 0.240 

31 −4.566 0.000 0 5.267 2.641 0.083 

32 −4.196 0.026 0 5.201 2.720 0.074 

33 −7.010 −0.019 0 5.680 1.664 0.111 

Designed compounds 

P3 −3.082 −0.106 0 5.780 1.143 0.050 0.084 

P4 −3.524 −0.005 0 5.738 1.103 0.118 0.023 

P6 −3.328 −0.084 0 5.741 0.891 0.125 0.059 

P7 −4.032 0.083 0 5.758 1.036 0.150 0.055 

P10 −5.263 0.077 0 5.852 0.800 0.125 0.082 

P14 −8.222 0.113 0 5.717 1.224 0.100 0.358 

P19 −3.410 0.109 0 5.741 1.318 0.125 0.081 

*: test compounds, P: proposed compounds. 

  

Applicability domain 

Leverage values were determined for the synthesized compounds using the formula hi = xiᵀ × (Xᵀ × X)⁻¹ × xi 

(where i = 1, 2, 3... n) and then compared to the critical leverage threshold (h*). A molecule was deemed to reside 

within the model's applicability domain provided its hi was below h*. The superscript ᵀ signifies matrix or vector 

transposition for the test compounds, n represents the count of training compounds, and k stands for the number 

of descriptors employed in the model. Here, xi corresponds to the descriptor matrix of a given test molecule, 

whereas X is the descriptor matrix compiled from the n training compounds [14]. By applying h* as the cutoff, 

leverage was assessed for each candidate structure. As shown in Table 5, the computed hi values spanned 0.055–

0.358, confirming that every compound falls inside the reliable applicability domain. 

 

Molecular docking 

All tested compounds underwent docking simulations targeting the active pocket of the receptor protein. 

Outcomes, presented in Figures 5 and 6, and Table 6, showed strong binding energies across the formed 

complexes, driven by multiple types of contacts between the docked molecules and essential amino acids in the 

pocket. To serve as a benchmark, Acarbose—a established inhibitor of alpha-glucosidase—was also docked. Its 

complex with 2f6d displayed key contacts: five Conventional Hydrogen Bonds involving Arg69, Glu211, Glu210, 

Leu208, and Asp70; two Carbon–Hydrogen Bonds with Trp209 and Ala138; and one Pi–Sigma contact with 

Tyr351. These contacts occurred at distances of 1.84 Å to 3.79 Å. Furthermore, several Water Hydrogen Bonds 

were present, emphasizing the contribution of solvent molecules to complex stability. 

 



Gonzalez et al., QSAR-Guided Identification of Novel Triazole Derivatives as Potent α-Glucosidase Inhibitors with 

Favorable ADMET Profiles 

 

 

238 

 
Figure 5. 3D view illustrating ligand positioning inside the alpha-glucosidase binding pocket. 

 

 
a) 
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b) 

Figure 6. 2D diagrams of the docked complexes, highlighting interaction distances, types, and involved 

amino acids. 

 

Table 6. Detailed listing of binding energies, interacting residues, interaction categories, and distances (in Å) for 

the generated complexes. 

N Score Kcal/Mol Interaction Type Residue Distance (Å) 

P3 −6.4 

Pi–Pi Stacked Trp139 4.87 

Pi–Pi Stacked Trp139 4.19 

Pi–Alkyl Trp139 5.13 

Pi–Alkyl Tyr351 5.29 

Water Hydrogen Bond HOH1163 3.57 

Water Hydrogen Bond HOH1189 2.92 

Water Hydrogen Bond HOH1672 3.38 

Water Hydrogen Bond HOH1504 3.09 

Water Hydrogen Bond HOH1672 3.45 

Water Hydrogen Bond HOH1723 3.23 

P4 −7 

Carbon–Hydrogen Bond Trp209 3.39 

Carbon–Hydrogen Bond Glu210 3.39 

Pi–Anion Glu210 3.85 

Pi–Pi Stacked Trp139 3.85 

Pi–Pi Stacked Trp139 4.36 

Water Hydrogen Bond HOH1433 4.17 

P6 −7.2 

Conventional Hydrogen Bond Glu210 2.62 

Conventional Hydrogen Bond Glu210 2.66 

Carbon–Hydrogen Bond Trp139 3.36 

Carbon–Hydrogen Bond Trp209 3.38 

Carbon–Hydrogen Bond Glu210 3.59 

Pi–Anion Glu210 3.77 

Pi–Pi Stacked Trp139 4.59 

Pi–Pi Stacked Trp139 3.97 

Pi–Pi Stacked Tyr351 4.29 

Alkyl Ala138 4.1 
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Water Hydrogen Bond HOH1163 4 

P7 −7.3 

Carbon–Hydrogen Bond Trp209 3.61 

Pi–Anion Glu210 3.69 

Pi–Pi Stacked Trp139 4.43 

Pi–Pi Stacked Trp139 3.74 

Pi–Pi Stacked Tyr351 4.54 

Pi–Pi Stacked Trp139 4.56 

Water Hydrogen Bond HOH1282 3.81 

Water Hydrogen Bond HOH1672 2.88 

Water Hydrogen Bond HOH1723 3.29 

Water Hydrogen Bond HOH1232 3.17 

Water Hydrogen Bond HOH1280 3.67 

P10 −7.1 

Conventional Hydrogen Bond Arg69 2.52 

Conventional Hydrogen Bond Trp209 2.17 

Conventional Hydrogen Bond Glu211 2.68 

Conventional Hydrogen Bond Glu211 2.38 

Carbon–Hydrogen Bond Glu210 3.26 

Pi–Pi Stacked Tyr351 4.04 

Water Hydrogen Bond HOH1464 2.93 

Water Hydrogen Bond HOH1672 3.48 

Water Hydrogen Bond HOH1723 3.18 

Water Hydrogen Bond HOH1189 3.24 

Water Hydrogen Bond HOH1282 3.39 

P14 −7.3 

Conventional Hydrogen Bond Arg345 2.71 

Conventional Hydrogen Bond Glu210 2.93 

Carbon–Hydrogen Bond Trp209 3.08 

Pi–Cation Arg345 3.42 

Pi–Sigma Tyr351 3.79 

Pi–Pi Stacked Trp139 5.27 

Pi–Pi Stacked Trp139 4.73 

Pi–Pi Stacked Trp139 3.97 

Pi–Pi Stacked Trp139 4.45 

P19 −7.2 

Pi–Cation Arg69 3.66 

Pi–Pi Stacked Tyr351 3.89 

Water Hydrogen Bond HOH1723 2.67 

Water Hydrogen Bond HOH1464 1.83 

Acarbose −12.3 

Conventional Hydrogen Bond Arg69 2.25 

Conventional Hydrogen Bond Glu211 2.21 

Conventional Hydrogen Bond Glu210 2.14 

Conventional Hydrogen Bond Leu208 1.9 

Conventional Hydrogen Bond Asp70 1.84 

Carbon–Hydrogen Bond Trp209 3.52 

Carbon–Hydrogen Bond Ala138 3.79 

Pi–Sigma Tyr351 3.54 

Water Hydrogen Bond HOH1449 2.72 

Water Hydrogen Bond HOH1504 2.91 

Water Hydrogen Bond HOH1778 3.03 

Water Hydrogen Bond HOH1797 1.8 

Water Hydrogen Bond HOH1663 2.73 

Water Hydrogen Bond HOH1663 1.99 

Water Hydrogen Bond HOH1232 2 

Water Hydrogen Bond HOH1282 2.32 

Water Hydrogen Bond HOH1095 3.01 

 

The variety of contacts detected—such as Conventional Hydrogen Bonds, Carbon–Hydrogen Bonds, Pi–Sigma 

linkages with critical residues, plus bridging Water Hydrogen Bonds—points to a highly elaborate binding 
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interface in the enzyme's active region. These contacts appear vital for disrupting alpha-glucosidase function. The 

robust affinities and selective binding patterns observed suggest that the compounds could inhibit the enzyme 

effectively, supporting their possible use in managing alpha-glucosidase-related conditions. 

Within the binding pocket, Compound P3 formed several hydrophobic contacts, specifically two Pi–Pi Stacked 

and two Pi–Alkyl interactions with Trp139 and Tyr351. It also showed Water Hydrogen Bonds to HOH1163, 

HOH1189, HOH1672, HOH1504, HOH1672, and HOH1723 (distances 2.92–5.29 Å). Compound P4 established 

contacts including one Carbon–Hydrogen Bond, one Pi–Anion, and Pi–Pi Stacked interactions with Trp209, 

Glu210, and Trp139, supplemented by a Water Hydrogen Bond to HOH1433. The binding mode of Compound 

P6 encompassed a broad set of contacts: one Conventional Hydrogen Bond, one Carbon–Hydrogen Bond, Pi–

Anion, Pi–Pi Stacked, and Alkyl interactions involving Trp139, Trp209, Glu210, Tyr351, and Ala138, along with 

a Water Hydrogen Bond to HOH1163. Compound P7's interactions consisted of a Carbon–Hydrogen Bond, Pi–

Anion, and Pi–Pi Stacked contacts with Trp209, Glu210, Tyr351, and Trp139, plus Water Hydrogen Bonds to 

HOH1282, HOH1672, HOH1723, HOH1232, and HOH1280. Compound P10 displayed a Conventional 

Hydrogen Bond, Carbon–Hydrogen Bond, and Pi–Pi Stacked contacts with Arg69, Trp209, Glu211, Glu210, and 

Tyr351, together with Water Hydrogen Bonds involving HOH1464, HOH1672, HOH1723, HOH1189, and 

HOH1282. Compound P14 featured an extensive interaction profile, including one Conventional Hydrogen Bond, 

one Carbon–Hydrogen Bond, Pi–Cation, Pi–Sigma, and Pi–Pi Stacked contacts with Arg345, Glu210, Trp209, 

Tyr351, and Trp139. In comparison, Compound 19 primarily relied on Pi–Cation and Pi–Pi Stacked interactions 

with Arg69 and Tyr351, augmented by Water Hydrogen Bonds to HOH1723 and HOH1464. 

Notably, among the evaluated structures, P6, P10, and P14 were found to mimic Acarbose's binding pattern, 

forming Conventional Hydrogen Bonds, Carbon–Hydrogen Bonds, and Pi–Sigma interactions with identical 

residues (Arg69, Trp209, Glu210, Glu211, and Tyr351). This overlap in contact profiles indicates that these 

compounds likely share a similar mode of action with the reference inhibitor, raising the possibility of comparable 

inhibitory potency against the target enzyme. 

  

ADMET properties prediction 

The ADMET profiles of the evaluated compounds were forecasted employing the pkCSM web server. Detailed 

outcomes are compiled in Table 7. Every compound under investigation complied with Lipinski's rule of five. 

 

Table 7. Computed ADMET parameters for the studied compounds via pkCSM online server. 

Property P19 P14 P10 P7 P6 P4 P3 

Molecular Weight 201.233 259.7 206.184 242.242 222.639 276.097 257.322 

Lipophilicity (LogP) 1.1326 2.6851 0.2766 1.0452 0.7909 1.79448 1.4225 

Number of Rotatable Bonds 2 2 2 3 2 2 1 

Hydrogen Bond Acceptors 5 4 6 6 6 5 6 

Hydrogen Bond Donors 1 1 1 1 1 0 1 

Polar Surface Area 87.251 108.105 84.271 102.135 90.409 100.171 108.812 

Predicted Water Solubility (log mol/L) −1.893 −3.667 −2.446 −2.956 −2.684 −3.119 −3.072 

Caco-2 Cell Permeability (log Papp) 0.728 1.336 0.74 1.322 1.294 1.011 1.292 

Human Intestinal Absorption (% absorbed) 72.544 93.42 85.844 77.072 84.358 97.517 98.134 

Skin Permeability (log Kp) −2.897 −2.72 −2.769 −2.735 −2.84 −2.554 −2.618 

P-glycoprotein Substrate No Yes No Yes No No No 

P-glycoprotein I Inhibitor No No No No No No No 

P-glycoprotein II Inhibitor No No No No No No No 

Volume of Distribution (human, log L/kg) −0.367 −0.195 −0.767 0.051 −0.714 −0.351 −0.294 

Plasma Protein Unbound Fraction (human) 0.311 0.215 0.448 0.378 0.448 0.293 0.339 

Blood-Brain Barrier Permeability (log BB) −0.323 0.373 −0.796 −0.587 −0.764 0.149 −0.043 

Central Nervous System Permeability (log PS) −2.414 −2.06 −3.118 −3.456 −3.047 −2.814 −1.977 

CYP2D6 Substrate No No No No No No No 

CYP3A4 Substrate No Yes No No No No Yes 

CYP1A2 Inhibitor Yes Yes Yes Yes Yes Yes Yes 

CYP2C19 Inhibitor No No No No No No No 

CYP2C9 Inhibitor No No No No No No No 
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CYP2D6 Inhibitor No No No No No No No 

CYP3A4 Inhibitor No No No No No No No 

Total Clearance (log mL/min/kg) 0.239 0.503 0.557 0.586 0.16 0.063 0.109 

Renal OCT2 Substrate No No No Yes No No No 

AMES Mutagenicity Yes No No Yes No Yes Yes 

Maximum Recommended Tolerated Dose 

(human, log mg/kg/day) 
0.378 −0.25 0.613 0.593 0.632 0.397 −0.749 

hERG I Blocker No No No No No No No 

hERG II Blocker No No No No No No No 

Oral Rat Acute Toxicity (LD50, mol/kg) 2.383 2.51 2.22 1.804 2.379 2.313 2.254 

Oral Rat Chronic Toxicity (LOAEL, log 

mg/kg_bw/day) 
1.82 1.669 0.664 1.128 1.604 1.747 1.705 

Hepatotoxicity No Yes Yes Yes No No Yes 

Skin Sensitization No No No No No No No 

Tetrahymena pyriformis Toxicity (pIGC50) 0.647 1.002 0.241 0.285 0.284 1.176 0.564 

Fathead Minnow Toxicity (LC50, log mM) 2.364 1.28 3.021 2.529 2.684 1.524 2.586 

 

As indicated in Table 7, all molecules demonstrated high intestinal absorption, reflecting strong potential for oral 

bioavailability. Moreover, they exhibited favorable aqueous solubility, which supports efficient uptake. With the 

exception of Compounds P10 and P19, all displayed robust Caco-2 permeability. 

No compound was forecasted to inhibit P-glycoprotein, suggesting minimal interference with efflux pumps 

responsible for expelling drugs from cells. However, Compounds P7 and P14 were identified as P-glycoprotein 

substrates, implying they could be recognized and effluxed by this transporter. All molecules showed elevated 

skin permeation potential, defined by LogKp values exceeding −2.5. 

Most compounds had low steady-state volume of distribution (VDss), except for Compounds P3 and P7. Here, 

low VDss corresponds to LogVDss below −0.15, meaning limited tissue distribution at equilibrium. Only 

Compound P14 was predicted to readily cross the blood–brain barrier (LogBB > 0.3), while the others showed 

moderate CNS penetration potential. Compound 3 was deemed capable of entering the central nervous system, 

whereas Compounds P6, P7, and P10 were classified as non-CNS-penetrant. 

Regarding metabolism, all compounds were projected as CYP1A2 inhibitors but neither substrates nor inhibitors 

of CYP2D6, CYP2C19, CYP2C9, or CYP3A4. Nevertheless, Compounds P6 and P14 emerged as CYP3A4 

substrates, indicating possible metabolism by this isoform. 

Apart from Compound P7, which was flagged as an OCT2 substrate and thus potentially transported by renal 

organic cation transporter 2, the remaining compounds were non-substrates for renal OCT2 clearance. Total 

clearance rates (expressed as Log(ml/min/kg)) varied from 0.063 to 0.586, providing insight into dosing 

requirements for maintaining steady-state levels. 

None of the molecules were anticipated to block hERG I or hERG II channels, reducing the risk of cardiotoxicity 

via QT prolongation. Additionally, no skin sensitization was predicted, implying low likelihood of contact 

dermatitis. 

In the AMES mutagenicity assay, Compounds P6, P10, and P14 were assessed as non-mutagenic, suggesting 

negligible risk of inducing bacterial mutations. 

 

Molecular dynamics simulation 

Compounds P6, P10, and P14 were chosen for molecular dynamics studies due to their promising ADMET 

profiles, superior docking scores, and key interactions with critical enzyme residues. 

 

Root-mean-squared deviation 

A 100 ns trajectory was generated for the protein–ligand complexes (alpha-glucosidase 2f6d bound to P6, P10, 

and P14) as well as the apo protein to monitor ligand-induced structural fluctuations. Protein backbone RMSD 

values were calculated and are displayed in Figure 7. Throughout the simulation, RMSD remained steadily below 

3 Å, demonstrating equilibrium and conformational stability in the bound states. The consistently low and stable 

RMSD profile confirms that the ligand-bound complexes preserved structural stability without significant 

deviations over the entire 100 ns period. 
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Figure 7. Protein RMSD trajectories for all simulated systems over 100 ns. 

 

Figure 8 displays the RMSD profiles of the bound ligands throughout their association with the receptor. The 

data indicate sustained stability for P6 and P14, with mean RMSD values of 5.52 Å and 2.82 Å, respectively. 

Conversely, P10 showed steady behavior during the initial 30 ns, followed by substantial fluctuations surpassing 

15 Å, although RMSD eventually declined toward the simulation's conclusion. The overall average RMSD for 

P10 was 8.16 Å. 

 

 
Figure 8. Ligand RMSD trajectories for all simulated systems over 100 ns. 

 

Root-mean-squared fluctuation 

Root-Mean-Squared Fluctuation (RMSF) was assessed for each residue across all ligand-bound complexes, with 

an additional run on the apo protein to enable direct comparison of per-residue mobility. The aim was to determine 

how the ligands influenced local protein flexibility. Across all complexes, residue RMSF values stayed under 3 

Å (Figure 9), reflecting minimal conformational variability. This pattern confirms that protein residues retained 

high stability in the presence of the bound ligands. 

 

  

Protein only RMSF Protein (P6- Protein) 
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RMSF Protein (P10- 2f6d) RMSF Protein (P6- 2f6d) 

Figure 9. Protein RMSF profiles for all simulated systems over 100 ns. 

 

Protein–ligand contact 

Detailed mapping of protein–ligand contacts revealed a broad spectrum of interaction types that underpin binding 

strength, as summarized in Table 8. For P6, direct Hydrogen bonds were formed with Tyr63. Hydrophobic 

contacts dominated with residues Trp209, Tyr351, Trp362, and Trp473, bolstering complex integrity. Ionic 

interactions occurred with Trp67, Asp70, and Glu210, adding electrostatic contributions. Water-mediated bridges 

connected the ligand to Tyr63, Arg69, Asp70, Trp209, and Glu210. Notably, contacts with Asp63, Asp70, Trp209, 

Glu210, Tyr351, and Trp362 persisted throughout the trajectory, emphasizing their importance for sustained 

complex stability. 

 

Table 8. Histograms and timelines of protein–ligand contacts in all simulated systems over 100 ns (Pink: ionic 

bond; blue: water bridge; violet: hydrophobic bond; green: Hydrogen bond). 

 
 

In the P10-2f6d and P14-2f6d systems, multifaceted interaction networks were observed. P10 established 

Hydrogen bonds with Trp67, Gly140, Trp209, Glu210, Glu211, and Arg345. Water bridges facilitated contacts 
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involving Arg69, Asp207, Leu208, Trp209, Glu210, Glu211, and Arg345. Hydrophobic interactions with Lys127, 

Trp139, Phe206, and Tyr351 reinforced stability, while ionic bonds with Glu210 and Tyr351 provided 

electrostatic support. For P14, ionic contacts were noted with Tyr63 and Glu210. Hydrophobic interactions 

engaged Tyr63, Trp209, Tyr351, and Trp62. Water bridges linked the ligand to Ala54, Arg69, Asp70, Leu208, 

Glu210, and Trp473. Direct Hydrogen bonds with Tyr63 and Trp209 further diversified the binding mode. 

Throughout the simulation, enduring contacts were maintained between P14 and residues Tyr63, Asp70, Trp209, 

Glu210, and Tyr351, underscoring their critical contribution to the durability of the P14-2f6d complex. 

 

Binding free energy 

Calculation of binding free energies for the three complexes—P6-2f6d, P10-2f6d, and P14-2f6d—yielded 

negative ΔG values of −32.59 kcal/mol, −35.8 kcal/mol, and −41.17 kcal/mol, respectively. These results confirm 

thermodynamically favorable and spontaneous binding processes. The strongly negative energies reflect robust 

affinities, with P14-2f6d displaying the most exothermic ΔG, suggesting it forms the most stable and energetically 

preferred interaction with the receptor protein. 

Conclusion 

The present work conducted an extensive QSAR study on 33 triazole derivatives to elucidate structural features 

governing their alpha-glucosidase inhibition. The goal was to discover new candidates for diabetes mellitus 

treatment. Using the optimal multiple linear regression model, seven novel compounds were proposed and further 

evaluated through molecular docking and dynamics simulations to probe their binding modes and complex 

stability with the target enzyme. Pharmacokinetic profiling was performed to forecast absorption, distribution, 

metabolism, and excretion characteristics. Findings identified three standout compounds (P6, P10, and P14) 

exhibiting potent inhibitory activity, robust binding to the enzyme, advantageous thermodynamic profiles, and 

promising oral drug-like properties. 

Acknowledgments: None 

Conflict of Interest: None 

Financial Support: None 

Ethics Statement: None 

References 

1. Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelan-tonio, E.; Ingelsson, E.; Lawlor, 

D.A.; Selvin, E.; Stampfer, M. Emerging risk factors collaboration diabetes mellitus, fasting blood glucose 

concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective 

studies. Lancet 2010, 375, 2215–2222.  

2. Abchir, O.; Daoui, O.; Nour, H.; Yamari, I.; Elkhattabi, S.; Errougui, A.; Chtita, S. Exploration of cannabis 

constituents as potential candidates against diabetes mellitus disease using molecular docking, dynamics 

simulations and Admet investigations. Sci. Afr. 2023, 21, e014745.  

3. International Diabetes Federation. Diabetes Federation. Diabetes around the world in 2021. In IDF Diabetes 

Atlas; International Diabetes Federation: Brussels, Belgium, 2021.  

4. Fatima, I.; Taha, M.; Wadood, A.; Mohammad, J.I.; Khan, H. 2-Aryl benzimidazoles: Synthesis, in vitro α-

amylase inhibitory activity, and molecular docking study. Eur. J. Med. Chem. 2018, 150, 248–260. 

5. Tanaka, M.; Akiyama, Y.; Mori, K.; Hosaka, I.; Kato, K.; Endo, K.; Ogawa, T.; Sato, T.; Suzuki, T.; Yano, 

T.; et al. Predictive modeling for the development of diabetes mellitus using key factors in various machine 

learning approaches. Diabetes Epidemiology Manag. 2024, 13, 100191.  

6. Shadakshari, A.; Kumara, T.S.; Kumar, N.; Chandra, S.J.; Kumar, K.A.; Ramu, R. Synthesis, 

characterization, and biocomputational assessment of the novel 3-hydroxy-4-(phenyl(pyridin-2-ylamino) 

methyl)-2-naphthoic acid derivatives as potential dual inhibitors of α-glucosidase and α-amylase 

enzymes. Results Chem. 2023, 5, 100745.  



Gonzalez et al., QSAR-Guided Identification of Novel Triazole Derivatives as Potent α-Glucosidase Inhibitors with 

Favorable ADMET Profiles 

 

 

246 

7. Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: 

Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–

6337.  

8. Abchir, O.; Nour, H.; Daoui, O.; Yamari, I.; ElKhattabi, S.; El Kouali, M.; Talbi, M.; Errougui, A.; Chtita, 

S. Structure-based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan 

natural compounds as candidates for the SARS-CoV-2 inhibitors. Nat. Prod. Res. 2023, 2023, 1–8 

9. Lee, S.-R.; Choi, J.; Choi, E.-K.; Lee, H.; Han, M.; Ahn, H.-J.; Kwon, S.; Lee, S.-W.; Han, K.-D.; Oh, S.; et 

al. Early rhythm control on diabetes-related complications and mortality in patients with type 2 diabetes 

mellitus and atrial fibrillation. Diabetes Res. Clin. Pract. 2023, 206, 1110200.  

10. Chaidam, S.; Saehlim, N.; Athipornchai, A.; Sirion, U.; Saeeng, R. Synthesis and biological evaluation of 

1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment 

of Type 2 diabetes. Bioorganic Med. Chem. Lett. 2021, 50, 128331.  

11. Dahmani, R.; Manachou, M.; Belaidi, S.; Chtita, S.; Boughdiri, S. Structural characterization and QSAR 

modeling of 1,2,4-triazole derivatives as α-glucosidase inhibitors. N. J. Chem. 2021, 45, 1253–1261.  

12. Fallah, Z.; Tajbakhsh, M.; Alikhani, M.; Larijani, B.; Faramarzi, M.A.; Hamedifar, H.; Mohammadi-

Khanaposhtani, M.; Mahdavi, M. A review on synthesis, mechanism of action, and structure-activity 

relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J. Mol. 

Struct. 2022, 1255, 132469.  

13. Matin, M.M.; Matin, P.; Rahman, R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; 

Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic 

Applications. Front. Mol. Biosci. 2022, 9, 864286.  

14. Yeye, E.O.; Khan, K.M.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Perveen, S.; Maharajan, M.K.; 

Shamim, S.; Hameed, S.; Aboaba, S.A.; et al. Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory 

activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies. Bioorganic Med. 

Chem. 2020, 28, 115467.  

15. Sharma, P.; Thakur, A.; Goyal, A.; Grewal, A.S. Molecular docking, 2D-QSAR and ADMET studies of 4-

sulfonyl-2-pyridone heterocycle as a potential glucokinase activator. Results Chem. 2023, 6, 101105.  

16. Mitra, S.; Chatterjee, S.; Bose, S.; Panda, P.; Basak, S.; Ghosh, N.; Mandal, S.C.; Singhmura, S.; Halder, 

A.K. Finding structural requirements of structurally diverse α-glucosidase and α-amylase inhibitors through 

validated and predictive 2D-QSAR and 3D-QSAR analyses. J. Mol. Graph. Model. 2024, 126, 108640.  

17. ChemOffice. PerkinElmer Informatics. 2016. Available online: http://www.cambridgesoft.com (accessed 

on 10 December 2023). 

18. PaDEL-Descriptor Yap. An open source software to calculate molecular descriptors and fingerprints. J. 

Comput. Chem. 2011, 32, 1466–1474.  

19. Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the 

development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132.  

20. Mauri, A.; Consonni, V.; Todeschini, R. Molecular descriptors. In Handbook of Computational Chemistry; 

Springer: Cham, Switzerland, 2017; pp. 2065–2093. 

21. Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR Modeling is not “Push a 

Button and Find a Correlation”: A Case Study of Toxicity of (Benzo-)triazoles on Algae. Mol. 

Inform. 2012, 31, 817–835.  

22. Nour, H.; Abchir, O.; Belaidi, S.; Qais, F.A.; Chtita, S.; Belaaouad, S. 2D-QSAR and molecular docking 

studies of carbamate derivatives to discover novel potent anti-butyrylcholinesterase agents for Alzheimer’s 

disease treatment. Bull. Korean Chem. Soc. 2021, 43, 277–292.  

23. Nour, H.; Abchir, O.; Belaidi, S.; Chtita, S. Research of new acetylcholinesterase inhibitors based on QSAR 

and molecular docking studies of benzene-based carbamate derivatives. Struct. Chem. 2022, 33, 1935–1946.  

24. Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models. Part 2. New Intercomparable 

Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. 

Model. 2012, 52, 2044–2058.  

25. Bennani, F.E.; Doudach, L.; Karrouchi, K.; El Rhayam, Y.; Rudd, C.E.; Ansar, M.; Faouzi, M.E.A. 2D-

QSAR study and design of novel pyrazole derivatives as an anticancer lead compound against A-549, MCF-

7, HeLa, HepG-2, PaCa-2, DLD-1. Comput. Toxicol. 2023, 26, 100265.  



Gonzalez et al., QSAR-Guided Identification of Novel Triazole Derivatives as Potent α-Glucosidase Inhibitors with 

Favorable ADMET Profiles 

 

 

247 

26. Sun, G.; Zhang, Y.; Pei, L.; Lou, Y.; Mu, Y.; Yun, J.; Li, F.; Wang, Y.; Hao, Z.; Xi, S.; et al. Chemometric 

QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D 

descriptors and interspecies toxicity modeling with mouse. Ecotoxicol. Environ. Saf. 2021, 222, 112525.  

27. Gramatica, P.; Sangion, A. A Historical Excursus on the Statistical Validation Parameters for QSAR Models: 

A Clarification Concerning Metrics and Terminology. J. Chem. Inf. Model. 2016, 56, 1127–1131 

28. Nath, A.; Ojha, P.K.; Roy, K. Computational modeling of aquatic toxicity of polychlorinated naphthalenes 

(PCNs) employing 2D-QSAR and chemical read-across. Aquat. Toxicol. 2023, 257, 106429.  

29. Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 2007, 26, 694–

701.  

30. Khedraoui, M.; Nour, H.; Yamari, I.; Abchir, O.; Errougui, A.; Chtita, S. Design of a new potent Alzheimer’s 

disease inhibitor based on QSAR, molecular docking and molecular dynamics investigations. Chem. Phys. 

Impact 2023, 7, 100361.  

31. Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.; McDowell, R.M.; Gramatica, P. Methods for 

reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based 

QSARs. Environ. Health Perspect. 2003, 111, 1361–1375.  

32. Netzeva, T.I.; Worth, A.P.; Aldenberg, T.; Benigni, R.; Cronin, M.T.; Gramatica, P.; Jaworska, J.S.; Kahn, 

S.; Klopman, G.; Marchant, C.A. Current status of methods for defining the applicability domain of 

(quantitative) structure-activity relationships: The report and recommendations of ECVAM workshop 

52. Altern. Lab. Anim. 2005, 33, 155–173.  

33. Yamari, I.; Abchir, O.; Siddique, F.; Zaki, H.; Errougui, A.; Talbi, M.; Bouachrine, M.; ElKouali, M.; Chtita, 

S. The anticoagulant potential of Lippia Alba extract in inhibiting SARS-CoV-2 Mpro: Density functional 

calculation, molecular docking analysis, and molecular dynamics simulations. Sci. Afr. 2024, 23, e01986.  

34. Ševčík, J.; Hostinová, E.; Solovicová, A.; Gašperík, J.; Dauter, Z.; Wilson, K.S. Structure of the complex of 

a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic 

domain. FEBS J. 2006, 273, 2161–2171.  

35. Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative 

protein modeling. Electrophoresis 1997, 18, 2714–2723.  

36. Trott, O.; Olson, A. Software news and update AutoDock Vina: Improving the speed and accuracy of 

docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 

455–461.  

37. Diniyah, N.; Alam, B.; Javed, A.; Alshammari, F.H.; Choi, H.-J.; Lee, S.-H. In silico and docking studies on 

the binding activities of Keap1 of antioxidant compounds in non-oilseed legumes. Arab. J. Chem. 2023, 16, 

104414.  

38. Elangovan, N.; Sowrirajan, S.; Arumugam, N.; Almansour, A.I.; Mahalingam, S.M.; Kanchana, S. Synthesis, 

solvent role (water and DMSO), antimicrobial activity, reactivity analysis, inter and intramolecular charge 

transfer, topology, and molecular docking studies on adenine derivative. J. Mol. Liq. 2023, 391, 123250.  

39. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An 

advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17.  

40. Liu, X.; Zang, X.; Yin, X.; Yang, W.; Huang, J.; Huang, J.; Yu, C.; Ke, C.; Hong, Y. Semi-synthesis of C28-

modified triterpene acid derivatives from maslinic acid or corosolic acid as potential α-glucosidase 

inhibitors. Bioorganic Chem. 2020, 97, 103694.  

41. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 

and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 

2785–2791.  

42. Yusuf, T.L.; Waziri, I.; Olofinsan, K.A.; Akintemi, E.O.; Hosten, E.C.; Muller, A.J. Evaluating the in vitro 

antidiabetic, antibacterial and antioxidant properties of copper(II) Schiff base complexes: An experimental 

and computational studies. J. Mol. Liq. 2023, 389, 122845.  

43. Shukla, R.; Munjal, N.S.; Singh, T.R. Identification of novel small molecules against GSK3β for 

Alzheimer’s disease using chemoinformatics approach. J. Mol. Graph. Model. 2019, 91, 91–104.  

44. Yamari, I.; Abchir, O.; Nour, H.; El Kouali, M.; Chtita, S. Identification of new dihydrophenanthrene 

derivatives as promising anti-SARS-CoV-2 drugs through in silico investigations. Main Group 

Chem. 2023, 22, 469–484.  



Gonzalez et al., QSAR-Guided Identification of Novel Triazole Derivatives as Potent α-Glucosidase Inhibitors with 

Favorable ADMET Profiles 

 

 

248 

45. Duchowicz, P.R.; Talevi, A.; Bellera, C.; Bruno-Blanch, L.E.; Castro, E.A. Application of descriptors based 

on Lipinski’s rules in the QSPR study of aqueous solubilities. Bioorganic Med. Chem. 2007, 15, 3711–3719.  

46. Chagas, C.M.; Moss, S.; Alisaraie, L. Drug metabolites and their effects on the development of adverse 

reactions: Revisiting Lipinski’s Rule of Five. Int. J. Pharm. 2018, 549, 133–149.  

47. Lambring, C.B.; Fiadjoe, H.; Behera, S.K.; Basha, R. Docking and molecular dynamic simulations of 

Mithramycin-A and Tolfenamic acid against Sp1 and survivin. Process. Biochem. 2024, 137, 207–216.  

48. Basnet, S.; Ghimire, M.P.; Lamichhane, T.R.; Adhikari, R.; Adhikari, A. Identification of potential human 

pancreatic α-amylase inhibitors from natural products by molecular docking, MM/GBSA calculations, MD 

simulations, and ADMET analysis. PLoS ONE 2023, 18, e0275765.  

49. Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; 

Wang, L.; et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory 

Comput. 2019, 15, 1863–1874.  

50. Protein Preparation Wizard. Available online: https://www.schrodinger.com/science-articles/protein-

preparation-wizard (accessed on 10 March 2023). 

51. Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. 

Phys. Chem. A 2001, 105, 9954–9960.  

52. Uba, A.I.; Chea, J.; Hoag, H.; Hryb, M.; Bui-Linh, C.; Wu, C. Binding of a positive allosteric modulator 

CDPPB to metabotropic glutamate receptor type 5 (mGluR5) probed by all-atom molecular dynamics 

simulations. Life Sci. 2022, 309, 121014.  

53. D.E. Shaw Research. Desmond Molecular Dynamics System, Maestro-Desmond Interoperability Tools; 

Schrödinger: New York, NY, USA, 2021.  

54. Bhattacharya, P.; Abualnaja, K.M.; Javed, S. Theoretical studies, spectroscopic investigation, molecular 

docking, molecular dynamics and MMGBSA calculations with 2-hydrazinoquinoline. J. Mol. 

Struct. 2023, 1274, 134482.  

55. Adeniji, S.E.; Uba, S.; Uzairu, A. Theoretical modeling and molecular docking simulation for investigating 

and evaluating some active compounds as potent anti-tubercular agents against MTB CYP121 

receptor. Futur. J. Pharm. Sci. 2018, 4, 284–295.  

56. Huang, X.; Ma, S.; Wu, Y.; Wan, C.; Zhao, C.; Wang, H.; Ju, S. High-Throughput Screening of Amorphous 

Polymers with High Intrinsic Thermal Conductivity via Automated Physical Feature Engineering. J. Mater. 

Chem. A 2023, 11, 20539–20548. 

57. Mouhsin, M.; Abchir, O.; El Otmani, F.S.; Oumghar, A.A.; Oubenali, M.; Chtita, S.; Mbarki, M.; Gamouh, 

A. Identification of novel NLRP3 inhibitors: A comprehensive approach using 2D-QSAR, molecular 

docking, molecular dynamics simulation and drug-likeness evaluation. Chem. Pap. 2023, 78, 1193–1204.  

58. Yang, L.; Wang, Y.; Hao, W.; Chang, J.; Pan, Y.; Li, J.; Wang, H. Modeling pesticides toxicity to 

Sheepshead minnow using QSAR. Ecotoxicol. Environ. Saf. 2020, 193, 110352.  

59. Papa, E.; Sangion, A.; Arnot, J.A.; Gramatica, P. Development of human biotransformation QSARs and 

application for PBT assessment refinement. Food Chem. Toxicol. 2018, 112, 535–543.  


