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ABSTRACT

Due to the rising incidence of diabetes mellitus and the drawbacks of existing therapies, there is an urgent demand
for new therapeutic agents targeting this condition. This research concentrates on developing novel compounds
with potent alpha-glucosidase inhibitory activity, a key enzyme in managing diabetes. A series of 33 triazole
derivatives was subjected to comprehensive QSAR analysis to determine the critical factors affecting their a-
glucosidase inhibitory potency. Based on the multiple linear regression (MLR) model, seven potential drug
candidates were designed. Molecular docking and dynamics simulations were performed to elucidate the
interaction mechanisms between the ligands and the target enzyme, as well as the stability of the resulting
complexes. In addition, the pharmacokinetic profiles of these designed compounds were evaluated to forecast
their in vivo behavior. Binding free energies were computed using the MMGBSA method, indicating favorable
thermodynamic characteristics. The findings identified three new compounds exhibiting high biological activity,
strong binding affinity to the target enzyme, and good oral bioavailability. These outcomes provide promising
opportunities for developing effective and well-tolerated antidiabetic drugs.
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Introduction

Diabetes mellitus (DM) is a chronic metabolic condition marked by hyperglycemia resulting from impaired insulin
action, insufficient insulin production, or a combination of both [1]. Persistent hyperglycemia exacerbates the
complications of diabetes mellitus, promoting various macrovascular issues such as peripheral and autonomic
neuropathy, heightened risk of atherosclerosis, cerebrovascular disorders, neuropathy, nephropathy, and
retinopathy [2].

The primary characteristics of diabetes mellitus (DM) are often accompanied by symptoms like polyuria,
polyphagia, weight loss, and blurred vision.

As reported by the IDF Diabetes Atlas (International Diabetes Federation), approximately 436 million individuals
globally were living with diabetes in 2021, with projections suggesting this figure could rise to 700 million by
2045 [3, 4].

The development of diabetes mellitus is associated with multiple lifestyle risk factors, including smoking,
excessive alcohol intake, sedentary behavior, and comorbidities such as dyslipidemia and hypertension. Genetic
factors, stress, and obesity also play significant roles in increasing susceptibility [5], whereas enzymes like alpha-
glucosidase and amylase facilitate the breakdown of carbohydrates into glucose and maltose, thereby elevating
blood glucose levels, leading to hyperglycemia and interfering with normal insulin function [2].

Simultaneous inhibition of a-glucosidase and a-amylase represents the preferred approach for mitigating the long-
term consequences of type 2 diabetes [6]. a-Glucosidase, a major carbohydrate-digesting enzyme located in the
intestinal brush border, converts complex oligosaccharides into absorbable monosaccharides [7].
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By slowing carbohydrate absorption in the small intestine, alpha-glucosidase inhibitors enable the pancreas to
secrete insulin in a more regulated manner. Their antihyperglycemic action is moderate, as they do not stimulate
insulin release directly but instead hinder alpha-glucosidase-mediated digestion of complex carbohydrates.
Nevertheless, currently available alpha-glucosidase inhibitors, including Miglitol, Acarbose, and Voglibose, are
linked to several unwanted side effects, such as nausea, abdominal distension, and flatulence [8, 9].
The diverse biological properties of 1,2,4-triazoles and their fused heterocyclic analogs have drawn considerable
interest from both academic and industrial researchers, making them a prominent class among nitrogen-containing
heterocycles [10]. Several approved drugs with therapeutic importance contain the 1,2,4-triazole scaffold,
including Sitagliptin, Voriconazole, and Fluconazole [11, 12].
A triazole is a five-membered heterocyclic ring comprising three nitrogen atoms and two carbon atoms linked by
alternating m-bonds, with the molecular formula C2H3N3. Triazoles exhibit pharmacological features such as
moderate dipole moment, hydrogen-bonding capability, ion—dipole interactions, n—m stacking, cation—mu
interactions, hydrophobic interactions, van der Waals forces, rigidity, and metabolic stability [13].
In 2020, Emmanuel Oloruntoba Yeye ef al. synthesized various 1,2,4-triazole derivatives and determined their
IC50 values through experimental testing [14]. The primary goal of the present study is to identify novel 1,2,4-
triazole-based compounds with potent a-glucosidase inhibitory activity. Specifically, a 2D-QSAR analysis was
conducted on these derivatives to develop predictive models for designing new triazole compounds and estimating
their biological activities prior to synthesis [15, 16].

Materials and Methods

A collection of 33 substituted 1,2,4-triazole derivatives was obtained from an earlier publication [14]. These
molecules demonstrated moderate to high inhibitory activity toward o-glucosidase, with their ICso values
converted to pICso (—log ICso) for QSAR development, as detailed in Table 1. The chemical structures of these
derivatives were constructed and geometry-optimized using the MMFF94 force field in Chem3D version
19.0.0.22 [17].

Table 1. Two-dimensional structures of the 33 triazole derivatives along with their corresponding pICso values
against alpha-glucosidase.
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Molecular descriptor computation and pruning

Molecular descriptors were generated for all compounds with the PaDEL software [18]. Since PaDEL computes
more than 800 descriptors per molecule, a selection process was necessary to retain only relevant features. The
objective feature selection tool in QSARINS software was applied for this purpose [19]. Descriptors showing high
pairwise correlation (|r] > 0.90) or near-constant values (>95%) were removed to eliminate multicollinearity and
irrelevant variables in subsequent GA-MLR modeling. Following pruning, a final set of 433 descriptors covering
1D and 2D categories was kept [20, 21].

OSAR model construction and validation

QSAR models were developed using QSARINS software, which is recognized for generating robust genetic
algorithm-multiple linear regression (GA-MLR) models. The dataset was randomly partitioned into training
(80%) and test (20%) sets via the software’s random split function [22, 23]. This established approach allows
model training on one subset and evaluation on an independent group [24].

The strategy focused on incorporating the optimal number of descriptors that significantly influence biological
activity to maximize model performance [25]. Descriptors served as independent variables to predict activity
according to Eq. 1:

Y =ao+ aiXi + axXe (D

Models were rigorously validated internally and externally, including Y-randomization and applicability domain
assessment, in line with OECD principles [26, 27]. Performance was evaluated using multiple statistical metrics
to identify the optimal model, including adjusted R? (R? adj), external R? (R? test), root-mean-square error
(RMSE), and determination coefficient (R?). The leave-one-out cross-validation coefficient (Q*> LOO) was
employed as the fitness criterion. Values exceeding 0.6 for these parameters generally indicate reliable and robust
models [28-30].

The applicability domain (AD) was defined via leverage analysis presented as a Williams plot, plotting
standardized residuals against leverage values. The critical leverage threshold was calculated as h* = 3(k + 1)/n,
where n is the number of training compounds and k is the number of descriptors. Compounds within this domain
are considered suitable for reliable predictions [31, 32].

Molecular docking

Molecular docking was employed to identify preferred binding poses of the ligands within the target active site,
along with binding affinities and specific residue interactions [33].

The protein structure was downloaded from the Protein Data Bank with PDB ID 2f6d [34], representing the
glucoamylase from Saccharomycopsis fibuligera complexed with Acarbose. This structure was selected due to its
similarity to alpha-glucosidase inhibition by Acarbose, combined with high resolution (1.60 A, below 2 A). The
receptor consists of 492 residues in Chain A (glucoamylase) (Figure 1a). Heteroatoms including alpha-acarbose,
phosphate, and sodium ions were removed prior to docking [34].

Figure 1. (a) Three-dimensional structure of the 2f6d receptor; (b) active site location in the 2f6d receptor.
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Protein preparation involved energy minimization with Swiss-PDB Viewer [35], addition of polar hydrogens, and
assignment of Gasteiger charges using AutoDock Vina [36-38]. Water molecules present in the binding pocket
were retained to allow potential bridging interactions with ligands. Ligands were energy-minimized under the
MMFF94 force field using Avogadro software [39] to achieve optimal conformations.
The docking grid was centered on the co-crystallized Acarbose position, a known alpha-glucosidase inhibitor used
as reference [40]. Grid coordinates were set at x = 12.68 A, y =10.80 A, z=—6.35 A, with dimensions of 20 A3
and spacing of 0.375 A (Figure 1b).
Docking was performed in five independent runs for reproducibility. Final ligand poses were chosen based on
cluster frequency across runs. All selected poses appeared consistently in every run, confirming their reliability.
Figure 2 illustrates the occurrence frequency of the resulting conformations across the runs.
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Figure 2. Occurrence frequency of each docking pose across five separate runs.

To validate the docking procedure, the co-crystallized ligand (Acarbose) was first redocked into the receptor's
binding pocket [8]. All newly designed compounds were then docked using AutoDock tools [41], allowing
detailed examination of possible interactions and calculation of binding affinities within the receptor's active site.
Docking was carried out over 9 independent runs, and the pose from the run exhibiting the lowest binding
energy—with an RMSD of 0—was chosen for further evaluation [42]. The computed RMSD of 0.217 A (well
below 2 A) demonstrates close overlap between the original and redocked Acarbose poses (Figure 3). This low
deviation confirms the accuracy and reproducibility of the docking methodology in recreating the native binding
orientation of the reference inhibitor [43].

Figure 3. Superimposition of the redocked ligand (yellow) onto the co-crystallized ligand (grey), highlighting
strong conformational agreement and validating the docking protocol.

ADMET analysis
Compounds displaying high pICso values against alpha-glucosidase were evaluated for ADMET characteristics to
better understand their pharmacokinetic and safety profiles, encompassing absorption, distribution, metabolism,
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excretion, and toxicity [44, 45]. Predictions were performed using the widely adopted pkCSM web server, which
models compound behavior in vivo.

Compliance with Lipinski's rule of five was checked to filter out unsuitable candidates, requiring molecular weight
below 500 g/mol, <5 hydrogen bond donors, <10 hydrogen bond acceptors, and LogP <5 [46]. Additional
parameters—including Caco-2 permeability, human intestinal absorption, and steady-state volume of distribution
(VDss)—were computed to assess overall drug-likeness and potential performance in the body [46].

Molecular dynamics (MD) simulation

Top-performing compounds—selected based on superior docking scores, highest inhibitory activity, and
favorable ADMET profiles—underwent molecular dynamics simulations to monitor structural dynamics via
metrics such as Root-Mean-Squared Deviation (RMSD) and Root-Mean-Squared Fluctuation (RMSF). Resulting
protein—ligand contacts were analyzed to explain observed stability or conformational changes [47, 48].
Complexes were prepared, energy-minimized, and refined using the OPLS3e force field [49] through the Protein
Preparation Wizard in Maestro software [50]. The system was solvated in an orthorhombic box with the TIP3P
water model [51]. Na* and CI” ions were added to neutralize charges, and physiological salt concentration was set
to 0.15 M. The system was gradually heated to 300 K at 1 bar pressure employing the Nose—Hoover thermostat
and Martyna—Tobias—Klein barostat [52]. Simulations were run for 100 ns under the NPT ensemble with regular
trajectory recording, utilizing the Desmond module within Schrédinger 2020-3 academic release [53].

Binding free energies of the simulated complexes were estimated via the Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) method implemented in Maestro. This approach provides valuable thermodynamic
insights into ligand—protein binding energetics during dynamics trajectories and enables efficient ranking of
interaction strength [54].

Results and Discussion

OSAR model analysis and validation in line with OECD guidelines

Through the application of the GA-MLR technique, multiple predictive models were developed, each
incorporating between 4 and 6 descriptors. The most suitable model was identified based on superior statistical
metrics that demonstrate its reliability, predictive accuracy, and stability. This optimal model, which utilizes the
descriptors AATSCS8s, VE3 Dzs, nHsOH, CIC1, and RotBFrac (Tables 2 and 3), fulfilled every validation
standard. Key metrics comprised the leave-one-out cross-validation correlation coefficient (Q?LOO = 0.633), the
determination coefficient (R? = 0.767), the root-mean-square error (RMSE = 0.082), the adjusted determination
coefficient (R%adj = 0.712), and the determination coefficient for the external test set (R%test = 0.649).

Table 2. The GA-MLR-based model and its associated statistical performance indicators.
Description Value
pICso = 6.403 + 0.759 AATSC8s + 0.022 VE3 Dzs —0.112

QSAR Model Equation nHsOH — 0.338 CICI — 1.804 RotBFrac
Total number of compounds 33
Compounds in training set 27
Compounds in test set 6
Model fitting performance
Coefficient of determination (R?) 0.767
Adjusted R? (R?_adj) 0.712
Root mean square error (RMSE) 0.082
Internal validation
Leave-one-out cross-validation (Q>_LOO) 0.649
External validation
External R* (R%_ext) 0.633
Randomization test parameters
Difference R — R>_adj 0.055
Average R (random models) 0.428
Average R? (random models) 0.196
Average Q? (random models) —0.342
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cRp? (randomization R?) 0.669

Table 3. Interpretation of the molecular descriptors employed in the selected model.

Descri
escriptor Name of Descriptor References
Symbol

AATSCSs Average centered Broto-Moreau autocorrelation at lag 8, weighted by I-state [55]

VE3_Dzs Logarithmic coefficient sum of the last eigenvector from the Barysz matrix, weighted by I- [56]
state

nHsOH Number of atom-type H E-State values corresponding to hydroxyl groups (-OH) [57]

CIC1 Complementary information content (neighborhood symmetry of 1-order) [58]

RotBFrac Proportion of rotatable bonds, not including terminal ones [59]

Outcomes from the Y-randomization procedure confirmed that no randomized model approached the performance
of the original one, as evidenced in Table 2. The markedly reduced R? and Q? values in randomized runs, together
with their mean values (R*Y'S = 0.195 and Q*Y'S =—0.341), verify that the QSAR model does not rely on spurious
correlations.

The applicability domain (AD) was defined to outline the chemical space covered by the dataset and to evaluate
the reliability of predictions according to structural similarity with the training set molecules. To achieve this, a
Williams plot was generated, incorporating a cutoff of three standard deviations and leverage values not exceeding
the warning threshold. Accordingly, QSAR predictions are deemed trustworthy solely for compounds situated
inside this AD. Assessment indicated that no outliers were present in the response values for either training or test
sets. Every compound displayed a leverage below the critical value of h* = 0.667 (Figure 4), with standardized
residuals confined within +£3 standard deviations [14].

©O Training
HAT i/i (h* = 0.667) vs. Std. residuals © Prediction
Std. residuals
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HAT ifi (h* = 0.667)
Figure 4. Williams plot for the selected model.

Development of new compounds

An earlier work conducted by Emmanuel Oloruntoba Yeye ef al. examined the a-glucosidase inhibitory effects
of 33 synthesized molecules. Their data revealed that compounds 14, 16, 20, 21, 25, 27, 28, and 33 possessed
inhibitory strength on par with the reference agent Acarbose. Common structural features among these potent
molecules included halogen atoms, amino functionalities, and/or nitro substituents.

e
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Derivatives containing nitro, amino, or halogen moieties generally exhibited superior inhibition, in contrast to
those bearing hydroxy groups, which displayed diminished activity.

Leveraging the validated QSAR model alongside these observations, the present research sought to engineer
improved inhibitors of a-glucosidase. The target was to obtain predicted pIC50 values exceeding those of the top-
performing compounds from the initial dataset.

Modifications emphasized the introduction of nitro and halogen groups to elevate AATSCS8s and VE3 Dzs
descriptor values, while deliberately excluding hydroxy substituents owing to their detrimental influence on
potency. Concurrently, adjustments were implemented to reduce nHsOH, CIC1, and RotBFrac values. By
implementing these guided modifications on the triazole framework, seven promising new structures were
proposed, as illustrated in Table 4. Relative to the leading compound from the original set (Table 5), all newly
designed molecules demonstrated superior predicted pIC50 values.

Table 4. Two-dimensional structures of the newly proposed compounds derived from the model.

N Structure N Structure

w

Table 5. Descriptor values for the model in the original synthesized compounds and the proposed new
compounds, including predicted pIC50 and leverage data.

Name N° VE3 Dzs AATSC8s nHsOH pICsy CIC1 RotBFrac hi

1+ -3819 ~0.006 1 5582 1439 0.133

2% —6.599 ~0.010 2 5264 1316 0.125

3 —7.797 0.037 2 5264 1316  0.125

4 8587 20.010 2 5270 1316 0.125

5 5087 ~0.075 3 5241 1328 0.118

6  —7.498 0.064 0 5369 1578 0222

7% —6.004 0.043 0 5367 1578 0222

8%  —4.740 0.184 0 5263 1830 0250

. 9 5434 0.131 0 5271 1633 0263

Synthetized Compounds =/ 0.122 0 5260 1633 0263 0667

11 -3355 ~0.174 0 5369 1.621  0.125

2% —1.724 ~0.169 0 5196 1968  0.167

13 2264 ~0.128 0 5368 1507  0.133

14 2531 ~0.128 0 5604 1346 0.125

15 —7233 ~0.127 0 5270 1376 0.177

16 —4375 0.044 0 5607 1376 0.177

17 2618 ~0.074 1 5198 2214 0.182

8%  —7.781 0.032 1 5276 1.193  0.176
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19 —4.965 0.256 1 5.485 1.396 0.211

20 —5.270 0.220 0 5.599  1.349 0.211

21 —2.950 —0.004 1 5.625 1.103 0.125

22 —6.069 —0.021 1 5.599  0.937 0.167

23 -3.622 —0.103 0 5461 1.161 0.176

24 —5.284 0.012 0 5.633 1.161 0.176

25 —6.839 —0.010 0 5.644  1.161 0.176

26 —9.690 —0.127 0 5359 1.055 0.167

27 —6.929 —0.030 1 5.636 1.011 0.167

28 —4.901 —0.080 0 5.613  1.069 0.133

29 —3.755 0.001 0 5264 2216 0.217

30 -3.692 —0.037 0 5.184  2.094 0.240

31 —4.566 0.000 0 5267 2.641 0.083

32 —4.196 0.026 0 5201  2.720 0.074

33 —=7.010 —0.019 0 5.680 1.664 0.111

P3 —3.082 —0.106 0 5780 1.143 0.050 0.084

P4 —3.524 —0.005 0 5.738  1.103 0.118 0.023

P6 -3.328 —0.084 0 5741  0.891 0.125 0.059
Designed compounds P7 —4.032 0.083 0 5.758 1.036 0.150 0.055

P10 —5.263 0.077 0 5.852  0.800 0.125 0.082

P14 —8.222 0.113 0 5717  1.224 0.100 0.358

P19 -3.410 0.109 0 5741 1318 0.125 0.081

*: test compounds, P: proposed compounds.

Applicability domain

Leverage values were determined for the synthesized compounds using the formula hi = xiT x (XT x X)™' x xi
(wherei=1, 2, 3... n) and then compared to the critical leverage threshold (h*). A molecule was deemed to reside
within the model's applicability domain provided its hi was below h*. The superscript T signifies matrix or vector
transposition for the test compounds, n represents the count of training compounds, and k stands for the number
of descriptors employed in the model. Here, xi corresponds to the descriptor matrix of a given test molecule,
whereas X is the descriptor matrix compiled from the n training compounds [14]. By applying h* as the cutoff,
leverage was assessed for each candidate structure. As shown in Table 5, the computed hi values spanned 0.055—
0.358, confirming that every compound falls inside the reliable applicability domain.

Molecular docking

All tested compounds underwent docking simulations targeting the active pocket of the receptor protein.
Outcomes, presented in Figures S and 6, and Table 6, showed strong binding energies across the formed
complexes, driven by multiple types of contacts between the docked molecules and essential amino acids in the
pocket. To serve as a benchmark, Acarbose—a established inhibitor of alpha-glucosidase—was also docked. Its
complex with 2f6d displayed key contacts: five Conventional Hydrogen Bonds involving Arg69, Glu211, Glu210,
Leu208, and Asp70; two Carbon—Hydrogen Bonds with Trp209 and Alal38; and one Pi—-Sigma contact with
Tyr351. These contacts occurred at distances of 1.84 A to 3.79 A. Furthermore, several Water Hydrogen Bonds
were present, emphasizing the contribution of solvent molecules to complex stability.
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Table 6. Detailed listing of binding energies, interacting residues, interaction categories, and distances (in A) for

the generated complexes.

N Score Kcal/Mol Interaction Type Residue Distance (A)
Pi—Pi Stacked Trp139 4.87
Pi—Pi Stacked Trp139 4.19
Pi-Alkyl Trp139 5.13
Pi-Alkyl Tyr351 5.29
P3 6.4 Water Hydrogen Bond HOH1163 3.57
Water Hydrogen Bond HOH1189 2.92
Water Hydrogen Bond HOH1672 3.38
Water Hydrogen Bond HOH1504 3.09
Water Hydrogen Bond HOH1672 3.45
Water Hydrogen Bond HOH1723 3.23
Carbon—Hydrogen Bond Trp209 3.39
Carbon-Hydrogen Bond Glu210 3.39
P4 g Pi—Anion Glu210 3.85
Pi—Pi Stacked Trp139 3.85
Pi—Pi Stacked Trp139 4.36
Water Hydrogen Bond HOH1433 4.17
Conventional Hydrogen Bond Glu210 2.62
Conventional Hydrogen Bond Glu210 2.66
Carbon—Hydrogen Bond Trp139 3.36
Carbon—Hydrogen Bond Trp209 3.38
P6 75 Carbon-Hydrogen Bond Glu210 3.59
Pi—Anion Glu210 3.77
Pi—Pi Stacked Trp139 4.59
Pi—Pi Stacked Trp139 3.97
Pi—Pi Stacked Tyr351 4.29
Alkyl Alal38 4.1
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Water Hydrogen Bond HOH1163 4
Carbon—-Hydrogen Bond Trp209 3.61
Pi—Anion Glu210 3.69
Pi—Pi Stacked Trp139 4.43
Pi—Pi Stacked Trp139 3.74
Pi—Pi Stacked Tyr351 4.54
P7 -7.3 Pi—Pi Stacked Trp139 4.56
Water Hydrogen Bond HOH1282 3.81
Water Hydrogen Bond HOH1672 2.88
Water Hydrogen Bond HOH1723 3.29
Water Hydrogen Bond HOH1232 3.17
Water Hydrogen Bond HOH1280 3.67
Conventional Hydrogen Bond Arg69 2.52
Conventional Hydrogen Bond Trp209 2.17
Conventional Hydrogen Bond Glu211 2.68
Conventional Hydrogen Bond Glu211 2.38
Carbon-Hydrogen Bond Glu210 3.26
P10 -7.1 Pi—Pi Stacked Tyr351 4.04
Water Hydrogen Bond HOH1464 2.93
Water Hydrogen Bond HOH1672 3.48
Water Hydrogen Bond HOH1723 3.18
Water Hydrogen Bond HOH1189 3.24
Water Hydrogen Bond HOH1282 3.39
Conventional Hydrogen Bond Arg345 2.71
Conventional Hydrogen Bond Glu210 2.93
Carbon—-Hydrogen Bond Trp209 3.08
Pi—Cation Arg345 342
P14 =73 Pi-Sigma Tyr351 3.79
Pi—Pi Stacked Trp139 5.27
Pi—Pi Stacked Trp139 4.73
Pi—Pi Stacked Trp139 3.97
Pi—Pi Stacked Trp139 4.45
Pi—Cation Arg69 3.66
P19 75 Pi—Pi Stacked Tyr351 3.89
Water Hydrogen Bond HOH1723 2.67
Water Hydrogen Bond HOH1464 1.83
Conventional Hydrogen Bond Arg69 2.25
Conventional Hydrogen Bond Glu211 2.21
Conventional Hydrogen Bond Glu210 2.14
Conventional Hydrogen Bond Leu208 1.9
Conventional Hydrogen Bond Asp70 1.84
Carbon—Hydrogen Bond Trp209 3.52
Carbon—-Hydrogen Bond Alal38 3.79
Pi-Sigma Tyr351 3.54
Acarbose -12.3 Water Hydrogen Bond HOH1449 2.72
Water Hydrogen Bond HOH1504 291
Water Hydrogen Bond HOH1778 3.03
Water Hydrogen Bond HOH1797 1.8
Water Hydrogen Bond HOH1663 2.73
Water Hydrogen Bond HOH1663 1.99

Water Hydrogen Bond HOH1232 2
Water Hydrogen Bond HOH1282 2.32
Water Hydrogen Bond HOH1095 3.01

The variety of contacts detected—such as Conventional Hydrogen Bonds, Carbon-Hydrogen Bonds, Pi-Sigma
linkages with critical residues, plus bridging Water Hydrogen Bonds—points to a highly elaborate binding
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interface in the enzyme's active region. These contacts appear vital for disrupting alpha-glucosidase function. The
robust affinities and selective binding patterns observed suggest that the compounds could inhibit the enzyme
effectively, supporting their possible use in managing alpha-glucosidase-related conditions.
Within the binding pocket, Compound P3 formed several hydrophobic contacts, specifically two Pi—Pi Stacked
and two Pi—Alkyl interactions with Trp139 and Tyr351. It also showed Water Hydrogen Bonds to HOH1163,
HOH1189, HOH1672, HOH1504, HOH1672, and HOH1723 (distances 2.92-5.29 A). Compound P4 established
contacts including one Carbon—Hydrogen Bond, one Pi—Anion, and Pi—Pi Stacked interactions with Trp209,
Glu210, and Trp139, supplemented by a Water Hydrogen Bond to HOH1433. The binding mode of Compound
P6 encompassed a broad set of contacts: one Conventional Hydrogen Bond, one Carbon—-Hydrogen Bond, Pi—
Anion, Pi—Pi Stacked, and Alkyl interactions involving Trp139, Trp209, Glu210, Tyr351, and Alal38, along with
a Water Hydrogen Bond to HOH1163. Compound P7's interactions consisted of a Carbon—Hydrogen Bond, Pi—
Anion, and Pi—Pi Stacked contacts with Trp209, Glu210, Tyr351, and Trp139, plus Water Hydrogen Bonds to
HOH1282, HOH1672, HOH1723, HOH1232, and HOH1280. Compound P10 displayed a Conventional
Hydrogen Bond, Carbon—Hydrogen Bond, and Pi—Pi Stacked contacts with Arg69, Trp209, Glu211, Glu210, and
Tyr351, together with Water Hydrogen Bonds involving HOH1464, HOH1672, HOH1723, HOH1189, and
HOH1282. Compound P14 featured an extensive interaction profile, including one Conventional Hydrogen Bond,
one Carbon-Hydrogen Bond, Pi—Cation, Pi—Sigma, and Pi—Pi Stacked contacts with Arg345, Glu210, Trp209,
Tyr351, and Trp139. In comparison, Compound 19 primarily relied on Pi—Cation and Pi—Pi Stacked interactions
with Arg69 and Tyr351, augmented by Water Hydrogen Bonds to HOH1723 and HOH1464.
Notably, among the evaluated structures, P6, P10, and P14 were found to mimic Acarbose's binding pattern,
forming Conventional Hydrogen Bonds, Carbon—-Hydrogen Bonds, and Pi—Sigma interactions with identical
residues (Arg69, Trp209, Glu210, Glu211, and Tyr351). This overlap in contact profiles indicates that these
compounds likely share a similar mode of action with the reference inhibitor, raising the possibility of comparable
inhibitory potency against the target enzyme.

ADMET properties prediction
The ADMET profiles of the evaluated compounds were forecasted employing the pkCSM web server. Detailed

outcomes are compiled in Table 7. Every compound under investigation complied with Lipinski's rule of five.

Table 7. Computed ADMET parameters for the studied compounds via pkCSM online server.

Property P19 P14 P10 P7 P6 P4 P3
Molecular Weight 201.233  259.7 206.184 242242 222.639 276.097 257.322
Lipophilicity (LogP) 1.1326  2.6851 0.2766 1.0452  0.7909 1.79448  1.4225
Number of Rotatable Bonds 2 2 2 3 2 2 1
Hydrogen Bond Acceptors 5 4 6 6 6 5 6
Hydrogen Bond Donors 1 1 1 1 1 0 1
Polar Surface Area 87.251 108.105 84.271 102.135 90.409 100.171 108.812
Predicted Water Solubility (log mol/L) -1.893  -3.667 -—2.446 -2956 —2.684 —3.119 -3.072
Caco-2 Cell Permeability (log Papp) 0.728 1.336 0.74 1.322 1.294 1.011 1.292
Human Intestinal Absorption (% absorbed) 72.544 93.42 85.844 77.072 84.358  97.517 98.134
Skin Permeability (log Kp) -2.897 272 2769 —2.735 284 2554  —2.618
P-glycoprotein Substrate No Yes No Yes No No No
P-glycoprotein I Inhibitor No No No No No No No
P-glycoprotein II Inhibitor No No No No No No No

Volume of Distribution (human, log L/’kg)  -0.367 —0.195 -0.767 0.051 -0.714 —-0351 —-0.294
Plasma Protein Unbound Fraction (human)  0.311 0.215 0.448 0.378 0.448 0.293 0.339
Blood-Brain Barrier Permeability (log BB)  —0.323 0.373 -0.796 —0.587 —0.764 0.149 —0.043
Central Nervous System Permeability (log PS) —2.414 —-2.06 —-3.118 -3.456 -3.047 -2.814 -1.977

CYP2D6 Substrate No No No No No No No
CYP3A4 Substrate No Yes No No No No Yes
CYP1A2 Inhibitor Yes Yes Yes Yes Yes Yes Yes
CYP2C19 Inhibitor No No No No No No No
CYP2C9 Inhibitor No No No No No No No
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CYP2D6 Inhibitor No No No No No No No
CYP3A4 Inhibitor No No No No No No No
Total Clearance (log mL/min/kg) 0.239 0.503  0.557 0.586 0.16 0.063 0.109

Renal OCT?2 Substrate No No No Yes No No No
AMES Mutagenicity Yes No No Yes No Yes Yes

Ma’“m“Ef;:“ﬁ;‘;'iﬂ;?k;‘::;?ted Dose 0378 025 0613 0593 0632 0397 0749
hERG I Blocker No No No No No No No
hERG II Blocker No No No No No No No

Oral Rat Acute Toxicity (LDS50, mol/kg) 2.383 2.51 2.22 1.804 2.379 2.313 2.254
Oral Rat Chronic Toxicity (LOAEL, log
mg/kg_bw/day)
Hepatotoxicity No Yes Yes Yes No No Yes
Skin Sensitization No No No No No No No
Tetrahymena pyriformis Toxicity (pIGC50)  0.647 1.002  0.241 0.285 0.284 1.176 0.564
Fathead Minnow Toxicity (LC50, log mM) 2.364 1.28 3.021 2.529 2.684 1.524 2.586

As indicated in Table 7, all molecules demonstrated high intestinal absorption, reflecting strong potential for oral
bioavailability. Moreover, they exhibited favorable aqueous solubility, which supports efficient uptake. With the
exception of Compounds P10 and P19, all displayed robust Caco-2 permeability.

No compound was forecasted to inhibit P-glycoprotein, suggesting minimal interference with efflux pumps
responsible for expelling drugs from cells. However, Compounds P7 and P14 were identified as P-glycoprotein
substrates, implying they could be recognized and effluxed by this transporter. All molecules showed elevated
skin permeation potential, defined by LogKp values exceeding —2.5.

Most compounds had low steady-state volume of distribution (VDss), except for Compounds P3 and P7. Here,
low VDss corresponds to LogVDss below —0.15, meaning limited tissue distribution at equilibrium. Only
Compound P14 was predicted to readily cross the blood—brain barrier (LogBB > 0.3), while the others showed
moderate CNS penetration potential. Compound 3 was deemed capable of entering the central nervous system,
whereas Compounds P6, P7, and P10 were classified as non-CNS-penetrant.

Regarding metabolism, all compounds were projected as CYP1A2 inhibitors but neither substrates nor inhibitors
of CYP2D6, CYP2C19, CYP2C9, or CYP3A4. Nevertheless, Compounds P6 and P14 emerged as CYP3A4
substrates, indicating possible metabolism by this isoform.

Apart from Compound P7, which was flagged as an OCT2 substrate and thus potentially transported by renal
organic cation transporter 2, the remaining compounds were non-substrates for renal OCT2 clearance. Total
clearance rates (expressed as Log(ml/min/kg)) varied from 0.063 to 0.586, providing insight into dosing
requirements for maintaining steady-state levels.

None of the molecules were anticipated to block hERG I or hERG II channels, reducing the risk of cardiotoxicity
via QT prolongation. Additionally, no skin sensitization was predicted, implying low likelihood of contact
dermatitis.

In the AMES mutagenicity assay, Compounds P6, P10, and P14 were assessed as non-mutagenic, suggesting
negligible risk of inducing bacterial mutations.

Molecular dynamics simulation
Compounds P6, P10, and P14 were chosen for molecular dynamics studies due to their promising ADMET
profiles, superior docking scores, and key interactions with critical enzyme residues.

Root-mean-squared deviation
A 100 ns trajectory was generated for the protein—ligand complexes (alpha-glucosidase 2f6d bound to P6, P10,
and P14) as well as the apo protein to monitor ligand-induced structural fluctuations. Protein backbone RMSD
values were calculated and are displayed in Figure 7. Throughout the simulation, RMSD remained steadily below
3 A, demonstrating equilibrium and conformational stability in the bound states. The consistently low and stable
RMSD profile confirms that the ligand-bound complexes preserved structural stability without significant
deviations over the entire 100 ns period.
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Figure 7. Protein RMSD trajectories for all simulated systems over 100 ns.

Figure 8 displays the RMSD profiles of the bound ligands throughout their association with the receptor. The
data indicate sustained stability for P6 and P14, with mean RMSD values of 5.52 A and 2.82 A, respectively.
Conversely, P10 showed steady behavior during the initial 30 ns, followed by substantial fluctuations surpassing
15 A, although RMSD eventually declined toward the simulation's conclusion. The overall average RMSD for
P10 was 8.16 A.

RMSD Ligand plot

—P]4 e—P]0) e—]P6

RMSD
=

2 9 16 23 30 37 44 51 58 65 72 79 86 93
Time (ns)

Figure 8. Ligand RMSD trajectories for all simulated systems over 100 ns.

Root-mean-squared fluctuation
Root-Mean-Squared Fluctuation (RMSF) was assessed for each residue across all ligand-bound complexes, with
an additional run on the apo protein to enable direct comparison of per-residue mobility. The aim was to determine
how the ligands influenced local protein flexibility. Across all complexes, residue RMSF values stayed under 3
A (Figure 9), reflecting minimal conformational variability. This pattern confirms that protein residues retained
high stability in the presence of the bound ligands.
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Figure 9. Protein RMSF profiles for all simulated systems over 100 ns.

Protein—ligand contact

Detailed mapping of protein—ligand contacts revealed a broad spectrum of interaction types that underpin binding
strength, as summarized in Table 8. For P6, direct Hydrogen bonds were formed with Tyr63. Hydrophobic
contacts dominated with residues Trp209, Tyr351, Trp362, and Trp473, bolstering complex integrity. lonic
interactions occurred with Trp67, Asp70, and Glu210, adding electrostatic contributions. Water-mediated bridges
connected the ligand to Tyr63, Arg69, Asp70, Trp209, and Glu210. Notably, contacts with Asp63, Asp70, Trp209,
Glu210, Tyr351, and Trp362 persisted throughout the trajectory, emphasizing their importance for sustained
complex stability.

Table 8. Histograms and timelines of protein—ligand contacts in all simulated systems over 100 ns (Pink: ionic
bond; blue: water bridge; violet: hydrophobic bond; green: Hydrogen bond).
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In the P10-2f6d and P14-2f6d systems, multifaceted interaction networks were observed. P10 established
Hydrogen bonds with Trp67, Gly140, Trp209, Glu210, Glu211, and Arg345. Water bridges facilitated contacts
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involving Arg69, Asp207, Leu208, Trp209, Glu210, Glu211, and Arg345. Hydrophobic interactions with Lys127,
Trp139, Phe206, and Tyr351 reinforced stability, while ionic bonds with Glu210 and Tyr351 provided
electrostatic support. For P14, ionic contacts were noted with Tyr63 and Glu210. Hydrophobic interactions
engaged Tyr63, Trp209, Tyr351, and Trp62. Water bridges linked the ligand to Ala54, Arg69, Asp70, Leu208,
Glu210, and Trp473. Direct Hydrogen bonds with Tyr63 and Trp209 further diversified the binding mode.
Throughout the simulation, enduring contacts were maintained between P14 and residues Tyr63, Asp70, Trp209,
Glu210, and Tyr351, underscoring their critical contribution to the durability of the P14-2f6d complex.

Binding free energy
Calculation of binding free energies for the three complexes—P6-2f6d, P10-2f6d, and P14-2f6d—yielded
negative AG values of —32.59 kcal/mol, —35.8 kcal/mol, and —41.17 kcal/mol, respectively. These results confirm
thermodynamically favorable and spontaneous binding processes. The strongly negative energies reflect robust
affinities, with P14-2f6d displaying the most exothermic AG, suggesting it forms the most stable and energetically
preferred interaction with the receptor protein.

Conclusion

The present work conducted an extensive QSAR study on 33 triazole derivatives to elucidate structural features
governing their alpha-glucosidase inhibition. The goal was to discover new candidates for diabetes mellitus
treatment. Using the optimal multiple linear regression model, seven novel compounds were proposed and further
evaluated through molecular docking and dynamics simulations to probe their binding modes and complex
stability with the target enzyme. Pharmacokinetic profiling was performed to forecast absorption, distribution,
metabolism, and excretion characteristics. Findings identified three standout compounds (P6, P10, and P14)
exhibiting potent inhibitory activity, robust binding to the enzyme, advantageous thermodynamic profiles, and
promising oral drug-like properties.
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