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ABSTRACT 

This study emphasizes the importance of medicinal plants as a key component of global biodiversity conservation 

and human health. It specifically stresses the necessity for precise identification of medicinal plant species to 

ensure their sustainable protection and proper application. Traditional classification techniques face difficulties 

due to the intricate nature of plant characteristics and the scarcity of annotated datasets. To overcome these 

limitations, this work introduces a deep learning–driven model for recognizing medicinal plant images using 

Convolutional Neural Networks (CNNs). The framework utilizes a CNN design integrating both residual and 

inverted residual blocks, supported by extensive data augmentation to strengthen the dataset. For feature selection, 

the system employs Binary Chimp Optimization in combination with serial feature fusion to enhance both 

accuracy and computational speed. Experimental findings indicate that the proposed method markedly surpasses 

conventional classification techniques in identifying medicinal flora, and it provides a strong foundation for future 

extensions to other plant groups. Overall, the results demonstrate how deep learning architectures can significantly 

advance automated plant identification when paired with botanical research. 
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Introduction 

Medicinal plants represent an essential resource for global healthcare, contributing significantly to both traditional 

therapies and modern pharmaceutical development. Reports from the WHO estimate that 35,000–70,000 plant 

species are used medicinally, accounting for roughly 14–28% of the 250,000 plant species known worldwide and 

35–70% of plant usage overall [1, 2]. Approximately 70% of the world’s population relies primarily on plant-

based remedies for healthcare needs [3]. Their importance stems from diverse bioactive compounds capable of 

producing therapeutic effects in humans [4, 5]. Many culturally important medicinal plants are integrated into 

daily diets and traditional healing practices, contributing to local economies and livelihoods [6]. In response to 

their ecological and social value, several global guidelines have been established for the protection of medicinal 

plant biodiversity [7]. 

Given their significance, accurate species identification is vital both for conservation initiatives and for preserving 

traditional knowledge systems. Yet manual identification methods are often unreliable, as many species closely 

resemble one another. Advances in computer vision and machine learning have enabled automated plant 

recognition tools. Widely known apps such as LeafSnap and Pl@ntNet illustrate the potential of these 

technologies, though they still struggle with variations in plant morphology, including differences in leaf form, 

color, and texture. Consequently, deep learning–based techniques have been developed to enhance classification 

accuracy [8–10]. 

Deep learning, especially CNN-based models, has become the dominant approach for image recognition tasks, 

outperforming earlier machine learning systems that depend on handcrafted features. CNNs automatically learn 
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hierarchical feature representations, which improves their effectiveness in complex classification tasks such as 

plant species identification [11, 12]. 

Recent developments have shifted attention toward hybrid systems that integrate multiple deep learning 

architectures. Hybrid transfer learning approaches have shown strong performance, particularly in medicinal plant 

classification. For instance, Ghosh et al. [13] demonstrated that combining PCA with CNNs produced 95.25% 

test accuracy—higher than many prior models. Such hybrid approaches address problems like high feature 

dimensionality and extensive training requirements, making them feasible for practical scenarios. Despite notable 

progress, research gaps remain, especially regarding systems that integrate multiple architectural components such 

as residual blocks, inverted residual blocks, and feature fusion. Existing models often assume large labeled 

datasets and high computational resources, which are not always accessible. Furthermore, limited work has been 

directed toward real-world applications that benefit local communities and practitioners. 

To address these challenges, our work introduces a hybrid deep learning framework for medicinal plant 

recognition. The model utilizes both residual and inverted residual block architectures to extract rich visual 

features. These features are optimized using the Binary Chimp Optimization (BCO) algorithm for dimension 

reduction and selection of the most informative attributes. Additionally, a feature fusion strategy merges the 

strongest features from both architectures to enhance classification performance. 

Model interpretability is further improved by applying Grad-CAM (Gradient-weighted Class Activation 

Mapping), which highlights image regions that influence classification decisions. The main contributions of this 

study include: 

• Applying extensive data augmentation to improve the diversity and generalization of the training set. 

• Designing a hybrid CNN architecture combining residual and inverted residual blocks for comprehensive 

feature extraction. 

• Implementing a feature fusion mechanism that integrates context-rich features from both architectural 

streams. 

• Utilizing BCO for selecting the most discriminative features, thereby increasing accuracy and reducing 

computation time. 

• Deploying machine learning classifiers on the optimized feature set to achieve highly accurate medicinal 

plant classification. 

• Using Grad-CAM visualizations to identify critical regions in plant images and enhance the 

interpretability of the model’s predictions. 

The structure of the paper is as follows: Section 2 reviews related research on medicinal plant classification and 

hybrid deep learning methods. Section 3 details the system architecture, including preprocessing, feature 

extraction, and classification techniques. Section 4 presents experimental results, evaluation metrics, and 

comparisons with existing models. Finally, Section 5 summarizes the findings and outlines future research 

prospects. 

Related works 

Over recent years, progress in plant leaf recognition and disease diagnosis has accelerated due to advances in 

computer vision and machine learning. Current studies span classical image-processing pipelines to modern deep 

learning architectures, each contributing to improvements in precision and stability for species classification and 

disease detection. The works summarized below outline developments in feature extraction, classification 

strategies, and preprocessing methods tailored to leaf-based analysis, illustrating the wide range and versatility of 

present methodologies used in plant identification. 

Traditional plant leaf classification methods 

Classical computer-vision techniques have long been applied to distinguish plant species and detect leaf disorders, 

with hand-crafted features serving as the basis for categorization. Wu et al. [14] extracted twelve shape-related 

descriptors derived from five geometric properties and used PCA to compress dimensionality before sending the 

reduced vectors to a probabilistic neural network. Using their own Flavia dataset, they reported an overall accuracy 

of 90.3%. Herdiyeni and Wahyuni [15] achieved 74.5% accuracy by merging fuzzy local binary patterns, fuzzy 

color histograms, and a PNN classifier on a set of 2448 leaf samples (resolution 270 × 240 pixels) collected from 

Indonesian medicinal flora. Ma et al. [16] combined Pyramid Histograms of Oriented Gradients (PHOG), Haar 

wavelet features, and a Top-hat transform, achieving 90% performance on ImageCLEF 2012 leaf images. 
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Deep learning models for plant leaf classification  

As deep learning became prominent, manual feature design was gradually replaced by models capable of learning 

representations automatically. Grinblat et al. [17] attained 92% accuracy when classifying leaves from three 

species using a CNN with three convolutional layers focused on venation structures. Paulson and Ravishankar 

[18] categorized 64 medicinal plant species using three CNN setups—VGG16, VGG19, and a custom 

architecture—achieving 95.7%, 97.8%, and 97.6% accuracy, respectively. Nasiri et al. [19] showed that CNN 

models applied to visible-light data (400–700 nm) could distinguish grape leaf cultivars with 99% accuracy across 

six varieties. Hu et al. [20] developed a Multi-Scale Function (MSF) CNN that integrates multiscale learning 

branches for leaf identification. Experiments on the MalayaKew (MK) and LeafSnap datasets demonstrated that 

their MSF-CNN achieved top-tier performance relative to comparable systems. 

Hybrid models and optimization techniques 

Recent investigations highlight hybrid strategies in which CNNs are coupled with optimization heuristics to 

enhance performance. Ghosh et al. [13] presented a Parallel Big Bang–Big Crunch (PB3C)-based CNN 

framework, using PB3C to tune CNN architecture parameters for improved accuracy and efficiency. They further 

introduced the HPB3C-3PGA algorithm, integrating PB3C with the 3-Parent Genetic Algorithm (3PGA) to 

accelerate the search for optimal CNN structures. This hybrid system provides broad exploration capabilities while 

retaining global convergence properties, ultimately producing higher accuracy with lower computational cost. 

These efforts reflect growing interest in merging CNNs with metaheuristic optimizers for large-scale classification 

scenarios. 

Challenges and opportunities 

Although performance has advanced considerably, several issues remain. Significant intra-class variability—

stemming from lighting differences, occlusion, and natural morphological changes—continues to impair model 

reliability when dealing with medicinal plants. To counter this, data augmentation (e.g., rotations, flips, noise 

injection) is commonly used to make models more resilient. Hybrid optimization schemes like HPB3C-3PGA 

show promise in addressing architecture-selection challenges by combining multiple search strategies to avoid 

local optima and accelerate convergence. Building on this direction, our study incorporates Binary Chimp 

Optimization (BCO) alongside CNN models to further boost classification accuracy. 

Summary of key contributions 

This research extends contemporary classification frameworks by employing a hybrid strategy tailored for 

medicinal plant recognition. The major contributions include: 

• Integration of Inverted Residual and Residual Blocks: This design enhances the feature-extraction stage, 

improving both model stability and accuracy. 

• Use of Binary Chimp Optimization (BCO): BCO identifies the most informative feature-map 

components so that only essential descriptors are passed to the classifier. 

• Serial-Level Feature Fusion: Features from all network modules are aggregated sequentially, yielding 

richer representations and markedly improved performance. 

Incorporating these elements aligns our method with recent advancements, such as those by Ghosh et al. [13], 

while addressing gaps by offering a complete, end-to-end medicinal plant classification pipeline combining state-

of-the-art CNN structures with an efficient optimization strategy. 

Proposed methodology 

Figure 1 illustrates sample medicinal plant images used in this study. The workflow begins with data 

augmentation performed on the selected dataset (Figure 2). After augmentation, the expanded dataset is processed 

through two custom model streams built using inverted residual designs and a self-attention framework (Figure 

3). Feature sets from the self-attention pathway and the inverted-residual-based model are extracted and then 

merged using a sequential fusion technique (Figure 4). The fused features are subsequently refined by the Binary 

Chimp Optimization method to select the most discriminative attributes. Finally, Grad-CAM visual explanations 

are applied to highlight diseased or healthy regions on the leaf samples. The following section describes each 

stage in detail. 
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Figure 1. Proposed architecture for medicinal plant classification. 

 

 
Figure 2. Data augmentation steps. 

 

 
Figure 3. Design of the proposed residual block. 
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Figure 4. Design of the proposed inverted residual block. 

Dataset collection and augmentation 

This study employs a publicly accessible medicinal plant image dataset from Kaggle 

(https://www.kaggle.com/datasets/sharvan123/medicinal-plant), which contains 30 classes. Since the dataset is 

inherently imbalanced, augmentation is necessary to improve training quality. The dataset used for validation 

consists of 1000 images, each with an approximate resolution of 500 × 500 pixels. The collection is divided evenly 

into training and testing subsets. 

Due to the limited number of samples, the raw dataset alone is insufficient for training deep networks. As 

illustrated in Figure 2, augmentation techniques—Left Flip, Right Flip, and 90° Rotation—are applied repeatedly 

across all classes until an adequate number of examples is obtained for model training. 

Proposed residual block architecture 

The Residual Block is a crucial component of MobileNetV2, a lightweight CNN widely used in mobile and 

embedded vision tasks due to its reduced computational load and strong performance. This work utilizes a dual-

parallel residual block design (Figure 1). The CNN structure adopts an inverted residual block format and receives 

input images sized 224 × 224 × 3. 

Following the input, the model applies a convolution layer with 3 × 3 kernels, a depth of 16, a 2 × 2 stride, and 

batch normalization. The first parallel branch contains two convolution layers with batch normalization and ReLU, 

using 3 × 3 kernels, depth 16, and a 1 × 1 stride. The second inverted residual branch contains two convolution 

layers and batch normalization with a depth of 32, also using a 3 × 3 kernel and 1 × 1 stride, together with ReLU 

activation. 

Additional skip connections link the grouped convolution to the fully connected layer, softmax, global average 

pooling, and final classifier. The entire model includes approximately 258k parameters, with 22 out of 45 layers 

being convolutional ones. The deep features following global average pooling are removed, and the model is 

trained on both datasets. The resulting feature dimension is N × 1024. The full architecture of the residual-based 

CNN is shown in Figure 3. 

Proposed inverted residual block architecture 

The alternative design in this framework uses a CNN architecture built from three parallel blocks based on an 

inverted residual structure. As in the previous model, the input size is 224 × 224 × 3. After receiving the input, 

the network applies batch normalization and a convolution layer with a 3 × 3 kernel, 16 filters, and a 2 × 2 stride. 

The first parallel branch consists of two convolutional layers with batch normalization and ReLU, using a 3 × 3 

kernel, 16 depth, and 1 × 1 stride. The next inverted residual segment employs two convolution layers, batch 

normalization with a depth of 32, a 3 × 3 kernel, and a 1 × 1 stride, activated by ReLU. 

The third branch begins with ReLU and includes two convolution layers, two ReLU activations, and a batch 

normalization layer. These layers use the same padding, 3 × 3 kernels, a 1 × 1 stride, and 64 channels. The 

complete inverted residual-based architecture appears in Figure 4. 



Yu et al., Optimized Convolutional Neural Networks and Binary Chimp Feature Selection for Robust Medicinal Plant Image 

Classification 

 

 

145 

Serial-based feature fusion 

Serial feature fusion is a strategy that progressively merges feature maps from multiple layers or model 

components, enabling the network to capture richer patterns and interdependencies. By aligning features 

sequentially, the approach enhances representational power—an advantage for tasks such as object detection, 

segmentation, and video understanding, where diverse and complementary information improves prediction 

accuracy. 

Mathematically, assume two feature matrices a and b, each sized k × N, where k denotes the number of features 

and N the number of samples. 

S (v)
fuse = [

k

N
] N × k1 + N × k2 (1) 

The most informative DA features are chosen during the fusion stage using an entropy-based selection rule. After 

this operation, the resulting feature matrices have dimensions of N × 1024 and N × 1024. These fused 

representations are then passed to the classification module, where neural network-based classifiers determine 

how many instances fall into each predefined class. 

Feature optimization (BCO) 

Khishe and Mosavi (2020) proposed a swarm-based metaheuristic known as the Chimp Optimization Algorithm 

(ChOA). This method is inspired by the cognitive behaviors and mating-driven strategies of chimpanzees, whose 

cooperative hunting patterns differ considerably from those of other predatory species. ChOA has been applied in 

numerous optimization domains because it is straightforward to implement, converges rapidly, avoids premature 

stagnation, and requires modest computational overhead. 

Chimpanzee hunting can be separated into two operational phases: exploration and exploitation. During 

exploitation, the chimps interact with the prey directly, refining local search in promising regions identified earlier. 

Exploration, on the other hand, involves scanning the wider environment—chasing, circling, and creating 

obstacles—to broaden the global search area. 

The algorithm models four functional chimp groups: attacker, barrier, chaser, and driver. In the optimization 

process, each chimp represents a potential solution within the search domain. The attacker corresponds to the best 

solution found so far, followed by the barrier (second best), the chaser (third), and the driver (fourth). These four 

elite chimps—denoted as 𝑎𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟, 𝑎𝑏𝑎𝑟𝑟𝑖𝑒𝑟, 𝑎𝑐ℎ𝑎𝑠𝑒𝑟, and 𝑎𝑑𝑟𝑖𝑣𝑒𝑟 —direct how the remaining chimp 

population 𝑎𝑐ℎ𝑖𝑚𝑝 updates its position at the beginning and end of every iteration. Their influence is computed 

using the following mathematical expressions. 

x1 (t+1) = a attacker(t) − A1. (Dattacker), D attacker = C1. x attacker − m. x chimp(t) (2) 

x2 (t+1) = a  barrier(t) − A2. (Dbarrier), D barrier = C2. x barrier − m. x chimp(t) (3) 

x3 (t+1) = a chaser(t) − A3. (Dchaser), D chaser = C3.  xchaser − m. x chimp(t) (4) 

x4 (t+1) = a driver(t) − A4. (Ddriver), D driver = C4. x driver − m. x chimp(t) (5) 

x chimp(t + 1) =
a1 + a2 + a3 + a4

4
 (6) 

Here, 𝑥𝑐ℎ𝑖𝑚𝑝 represents the position of each candidate solution at iteration t, where t denotes the current iteration 

number. 
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Algorithm 1. Pseudo-code of the ChOA algorithm. 

Results and Discussion 

This section presents a comprehensive discussion of the experimental findings from the proposed framework. 

Experiments were carried out using medicinal plant image datasets. Each dataset was split evenly, with 50% of 

images allocated for training and 50% for testing the proposed model. All experiments employed 10-fold cross-

validation to balance computational cost and variance, ensuring reliable performance estimation. The feature set 

used had dimensions of × 1024; the choice of 𝑘=10 provided optimal performance, as lower values were 

insufficient. Each experimental run involved ten iterations of k-fold cross-validation. The models were trained 

using the following parameters: optimizer SGDM, mini-batch size 16, learning rate 0.0001, and 10 epochs. 

Performance metrics evaluated included computation time, F1-score, precision, recall, accuracy, error rate, and 

false-negative rate. All tests were executed on an MSI Leopard motherboard with an Intel Core i7 CPU, 16 GB 

RAM, 512 GB SSD + 1 TB HDD, and an NVIDIA RTX 4 GB GPU. 

Results for proposed residual block architecture 

This section presents results obtained from the medicinal plant dataset using the residual block-based CNN 

architecture. The Residual Block CNN results are summarized in Table 1. Among the classifiers, the WNN 

classifier achieved the highest performance with 99.7% accuracy. Precision, recall, and F1-score were 99.6%, 

99.6%, and 99.6%, respectively, with a computational time of 669.05 s. The NNN classifier reached 85.8% 

accuracy, with a precision and F1-score of 85.7% and 85.8%, respectively. Computational times for classifiers 

were 543.94 s, 637.68 s, 583.3 s, and 596.99 s. The confusion matrix for the WNN classifier is depicted in Figure 

5. 
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Figure 5. Confusion matrix of WNN classifier for residual block architecture. 

 

Table 1. Results for proposed residual block CNN. 

NNN 85.7 85.8 85.7 85.8 543.94(s) 

MNN 98.2 98.1 98.2 98.2 637.68(s) 

WNN 99.6 99.6 99.6 99.7 669.05(s) 

BNN 84.2 84.1 84.1 84.4 583.3(s) 

TNN 82.3 82.4 82.3 82.4 596.99(s) 

Results for proposed inverted residual block architecture 

This section shows findings from the medicinal plant dataset using the inverted residual block CNN architecture. 

Results are summarized in Table 2. The WNN classifier again outperformed others, reaching 99.9% accuracy. 

With a computation time of 343.74 s, accuracy, recall, and F1-score were 99.8%, 99.9%, and 99.8%, respectively. 

For other classifiers, the NNN achieved 97.6% accuracy, with a precision, recall, and F1-score of 97.5%, 97.6%, 

and 97.5%. Computational times for classifiers were 597.91 s, 312.98 s, 638.96 s, and 647.99 s. The confusion 

matrix for WNN is shown in Figure 6. 

 
Figure 6. Confusion matrix of WNN classifier for inverted residual block architecture. 
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Table 2. Results for the proposed inverted residual block CNN. 

NNN 97.5 97.6 97.5 97.6 597.91(s) 

MNN 99.7 99.8 99.7 99.8 312.98(s) 

WNN 99.8 99.9 99.8 99.9 343.74(s) 

BNN 96.4 96.5 96.5 96.9 638.96(s) 

TNN 95.2 95.1 95.1 95.3 647.99(s) 

Serial-based feature fusion results 

Results for serial-based feature fusion are presented in this section. The fused features are derived from the 

proposed method, combining multiple feature streams. Table 3 summarizes the performance. The WNN classifier 

achieved 99.6% accuracy, with a recall and F1-score of 99.5% and 99.6%, respectively, at a computation time of 

1586.5 s. Other classifiers recorded accuracies as follows: NNN 85.3%, MNN 98.1%, BNN 84.7%, and TNN 

81.2%. Computational times for these classifiers were 1328.2 s, 1534.4 s, 1233 s, and 1274.7 s. Figure 7 displays 

the WNN confusion matrix. 

 
Figure 7. Confusion matrix for serial-based feature fusion with WNN classifier. 

Table 3. Serial-based feature fusion results. 

NNN 85.3 85.2 85.3 85.3 1328.2(s) 

MNN 97.9 98.0 98.1 98.1 1534.4(s) 

WNN 99.5 99.4 99.6 99.6 1586.5(s) 

BNN 84.5 84.6 84.7 84.7 1233(s) 

TNN 81.1 81.0 81.2 81.2 1274.7(s) 

Feature optimization results 

Finally, the outcomes of feature optimization on the medicinal plant dataset are reported. Table 4 presents the 

results of BCO-based feature selection. The WNN classifier remained optimal with 99.6% accuracy, a recall of 

99.5%, and an F1-score of 99.6%, with a computation time of 1397.2 s. For other classifiers, precision values 

were 80.0% for NNN, 93.1% for MNN, 79.6% for BNN, and 77.0% for TNN. Corresponding computational times 

were 1048.7 s, 1190.5 s, 996.73 s, and 1020.6 s. The WNN classifier confusion matrix is illustrated in Figure 8. 
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Figure 8. Confusion matrix of WNN classifier after feature optimization. 

Table 4. Feature optimization results. 

NNN 79.9 79.8 79.8 80.0 1048.7(s) 

MNN 93.0 93.1 93.1 93.1 1190.5(s) 

WNN 99.5 99.4 99.6 99.6 1397.2(s) 

BNN 79.5 79.6 79.6 79.6 996.73(s) 

TNN 77.0 77.0 77.0 77.0 1020.6(s) 

Grad-CAM visualization 

The final step involves visualizing the behavior of the proposed deep learning framework using Grad-CAM. The 

gradient-based class activation mapping, presented in Figure 9, highlights important regions in the input images 

that contribute most to the model's predictions. The heatmap overlays emphasize these critical areas, with the 

color brown indicating regions most influential in determining the correct class. This visualization confirms that 

the proposed model accurately identifies the correct categories. 

 
Figure 9. Grad-CAM visualization of the proposed deep learning model. 

Conclusion 

This study underscores the vital importance of medicinal plants in healthcare and emphasizes the need for precise 

classification techniques to ensure their preservation and effective utilization. The use of deep learning, 

particularly transfer learning methods, demonstrated substantial improvements in classification accuracy and 
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reliability. Employing advanced CNN architectures, including residual and inverted residual blocks, further 

enhanced the performance of the classification system. These results highlight the potential of integrating machine 

learning with botanical research to support biodiversity conservation and optimize the application of medicinal 

flora in health management. 

Future directions include incorporating multimodal data, such as combining leaf images with chemical 

composition and genetic information, to enhance classification precision and enable differentiation between 

closely related species. Efforts will also focus on developing models robust to varying environmental conditions, 

including changes in illumination, backgrounds, and plant maturity, to improve generalization. Expanding the 

dataset to cover less-represented species and conducting cross-regional studies will provide a more comprehensive 

classification framework. Finally, these sophisticated classification methods can be deployed in mobile apps or 

real-time field devices, creating practical tools for researchers, practitioners, and conservationists to identify and 

preserve medicinal plants in their natural habitats. 
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