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ABSTRACT 

Recent preclinical findings have identified selective inhibitors of sirtuin 2 (SIRT2) as potential therapeutic agents 

for treating age-related diseases, but none have advanced to clinical trials. The growing adoption of machine 

learning (ML) techniques in drug discovery has demonstrated their transformative potential, yet there remains a 

lack of large-scale, robust ML models for identifying novel SIRT2 inhibitors. To fill this gap, we developed 

SIRT2i_Predictor, a machine-learning-based tool designed to assist in virtual screening (VS), lead optimization, 

and the selection of SIRT2 inhibitors for experimental validation. The tool integrates a series of high-performance 

ML models, both for regression and classification, to predict the potency of inhibitors and their selectivity across 

SIRT1-3 isoforms. These models were trained on an extensive dataset comprising 1797 compounds using state-

of-the-art ML algorithms. A comparison with traditional structure-based VS protocols revealed that the tool not 

only covers a comparable chemical space but also offers significant improvements in processing speed. The tool 

was successfully applied to screen an in-house compound database, confirming its utility in prioritizing candidates 

for costly in vitro testing. With a user-friendly web interface, SIRT2i_Predictor is accessible to the broader 

research community, and its source code is freely available online. 
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Introduction 

SIRT2 is an NAD+-dependent protein deacetylase crucial for regulating numerous biological processes, including 

genome stability, metabolism, aging, tumor development, and cell-cycle control [1-5]. Research using cellular 

and animal models has suggested that inhibiting SIRT2 could be a promising approach for treating age-related 

diseases, such as neurodegenerative conditions and cancer [6, 7]. Over the past ten years, growing preclinical 

evidence has increased interest in developing small-molecule inhibitors targeting SIRT2, with a particular focus 

on their potential as anticancer therapies [7]. Inhibition of SIRT2 has been found to play a key role in tackling 

various aspects of cancer progression, including inhibiting proliferation, invasion, angiogenesis, and metastasis 

[8-10]. Additionally, SIRT2 has been implicated in contributing to drug resistance in cancer therapy. Recent 

studies have shown that combining SIRT2 inhibitors with existing drugs such as dasatinib, doxorubicin, or 

paclitaxel could help overcome resistance in melanoma or certain subtypes of breast cancer cells [11-13]. 

Moreover, selective SIRT2 inhibitors have been explored as a means to enhance tumor immunotherapy by 

activating tumor-infiltrating lymphocytes, offering new possibilities for improving the clinical outcomes of TIL 

(tumor-infiltrating lymphocyte) and CAR-T (chimeric antigen receptor T-cell) therapies [14]. Despite decades of 

research and the discovery of many SIRT2 inhibitors, none have progressed to clinical trials, highlighting the need 

for further advancements in the field [15]. The most common challenges faced by existing inhibitors are poor 

selectivity, inadequate potency, or undesirable physicochemical properties [10, 15, 16]. 
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Sirtuins, including SIRT2, have a catalytic core composed of a larger Rossmann-fold domain and a smaller zinc-

binding domain, which are linked by flexible loops (Figure 1a). All sirtuins operate through a shared catalytic 

mechanism, wherein a positively charged O-alkylimidate intermediate forms between NAD+ and the acetyl–

lysine substrate, eventually leading to the hydrolysis of this intermediate into deacetylated polypeptides and 2′-O-

acetyl-ADP-ribose (Figure 1b) [17]. The majority of known inhibitors target this catalytic mechanism by binding 

to the active site located in the cleft between the two domains (Figure 1c). However, due to the conserved nature 

of the catalytic site across sirtuin isoforms, achieving selectivity for SIRT2 inhibitors remains a significant 

challenge in drug development (Figure 1c) [15, 18]. Recent studies have pointed to the pharmacological benefits 

of selectively inhibiting SIRT2 over inhibiting other sirtuin family members, such as SIRT1 and SIRT3, which 

underscores the importance of selectivity in developing new SIRT2 inhibitors [19]. Additionally, the complex 

conformational flexibility of SIRT2 when interacting with inhibitors has been identified as a major barrier to 

discovering new compounds using structure-based computer-aided drug design (CADD) approaches [20]. 

Nevertheless, the extensive datasets generated in the search for novel SIRT2 inhibitors offer valuable 

opportunities for ligand-based CADD methods, particularly those incorporating machine learning techniques. 

 

  
 

a) b) c) 

Figure 1. Sirtuin Structure and Catalytic Mechanism Summary. (a) The two domains of sirtuins, 

demonstrated with the SIRT3 structure (PDB ID: 4FVT). NAD+ and the substrate are shown in green sticks. 

(b) The general mechanism of sirtuin-catalyzed deacetylation. (c) The challenge of achieving selectivity in 

sirtuin inhibitors, with aligned structures of SIRT1 (yellow) (PDB ID: 4I5I), SIRT2 (pink) (PDB ID: 5D7P), 

and SIRT3 (gray) (PDB ID: 4BV3). Some regions are omitted for clarity. Inhibitors (represented by gray, 

pink, or yellow sticks) display a consistent binding mode across all isoforms. NAD+ and ADP–ribose are 

shown in corresponding colors. 

 

The discovery of novel therapeutic agents, particularly under the framework of precision medicine initiatives 

(NIH), increasingly relies on the integration of extensive datasets into drug development through cheminformatics 

[21]. The big data era in drug discovery has positioned artificial intelligence (AI) as a game-changing tool, capable 

of reducing both the time and costs associated with preclinical drug research [22, 23]. The rapid growth of machine 

learning (ML) applications in drug discovery has been facilitated by the availability of expansive datasets and the 

democratization of AI tools. Publicly available pharmacological databases, which continue to expand with records 

of biological activities, have allowed for more comprehensive approaches to drug discovery through ML-based 

modeling of structure–activity relationships (SAR) [21-23]. 

Quantitative structure–activity relationship (QSAR) modeling is a widely used computational method that 

correlates the structural properties of compounds with their biological activities, either through classification or 

regression models [24]. QSAR modeling has proven to be an effective strategy in preclinical drug development, 

particularly in predicting inactive compounds or minimizing side effects [21, 22, 25]. Analyses show that updating 

QSAR models with new data typically leads to better prediction accuracy and expanded applicability. QSAR 

models built on larger, more diverse datasets are able to cover a broader chemical space and offer more 

generalizable predictions. Consequently, large-scale QSAR models, trained on comprehensive datasets, are 

gaining popularity for their broad applicability and predictive power [25-27]. However, there remains a lack of 

robust and large-scale QSAR models for predicting the potency and selectivity of SIRT2 inhibitors. Developing 
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such models could significantly aid virtual screening, lead optimization, and drug repurposing efforts, as well as 

contribute to integrating cheminformatics with omics data in the increasingly complex precision medicine 

pipelines. 

Given the promising preclinical data regarding the pharmacological benefits of selective SIRT2 inhibitors for 

various cancers, and their potential to enhance existing therapies such as immunotherapies, SIRT2 inhibitors could 

serve as a valuable addition to the arsenal of precision medicine drugs. To support the development of these 

inhibitors, this study focuses on creating a framework for efficient screening and evaluation of new compounds 

for their ability to inhibit SIRT2. This framework, called SIRT2i_Predictor, is based on high-quality, large-scale 

classification and regression QSAR models, utilizing publicly available data on SIRT2 inhibitor potency and 

selectivity. By providing an intuitive, web-based interface, SIRT2i_Predictor is made available to the broader 

scientific community for use. 

Materials and Methods  

Dataset preparation 

The initial dataset was compiled by extracting records from the ChEMBL database (release 30), focusing on 

compounds with reported inhibitory activity against SIRT2, with activity measurements either as IC50 values or 

inhibition percentages (Inh%) [28]. Additional compounds were sourced from patent US20160376238A1 [29], 

with data extracted using ChemDataExtractor (v 1.3.0) software [30]. The raw dataset was categorized into four 

groups (Datasets 1–4) based on their intended use (details provided below). Following data collection, all datasets 

underwent manual curation to remove records that did not pertain specifically to SIRT2 inhibition, excluding 

activities related to other processes (such as defatty-acylation). The curated datasets were then pre-processed by 

normalizing SMILES representations, removing duplicate entries, stripping salts, and standardizing molecule 

structures. RDKit (v 2021.03.4) [31] was used for these tasks. Duplicates were reviewed, and the most 

representative record for each compound group was kept. When both IC50 and Inh% values were available, the 

IC50 value was preferred. 

For regression models, IC50 values were converted into pIC50 values (pIC50 = −log10(IC50)), while for 

classification models, compounds were categorized based on IC50 and Inh% thresholds. Compounds were 

classified as “SIRT2 active” if IC50 ≤ 50 µM, or Inh% ≥ 80% at 200 µM, ≥ 70% at 100 µM, ≥ 60% between 50–

100 µM, or ≥ 50% at concentrations below 50 µM. Compounds were assigned to the “SIRT2 inactive” category 

if IC50 ≥ 90 µM or Inh% ≤ 40% (above 100 µM). For multiclass models, similar classification criteria were 

applied using data for SIRT1 and SIRT3. To prepare for training, Datasets 1–4 were split into training (70%) and 

testing (30%) sets using stratified splitting from the scikit-learn library (v 1.1.1) [32]. To address class imbalance, 

the SMOTE technique from the imbalanced-learn library (v 0.9.1) [33] was used before training the classification 

models. 

 

Calculation of molecular features and feature selection 

Once the datasets were prepared, molecular features were generated by encoding compounds using various 

fingerprints: 166-bit MACCS keys, 1024-bit extended-connectivity fingerprints (ECFP4 and ECFP6), and 1613 

two-dimensional descriptors calculated with the Mordred tool (v 1.2.0) [34]. Descriptors were reduced by 

removing those with zero or NaN values, followed by standardization. Descriptors with low variance (below 0.1) 

were removed. Pearson’s correlation coefficient was used to detect highly correlated descriptors (above 0.9), and 

one of each pair was retained. The final set of descriptors for model building was selected through recursive 

feature elimination with cross-validation (CV) using scikit-learn (v 1.1.1) [32]. A decision tree classifier with 10-

fold cross-validation was employed for feature selection. This process was carried out on the training set alone. 

 

Model development and evaluation 

This study used five different machine learning (ML) algorithms to develop predictive models: random forest 

(RF), support vector machines (SVM, including both support vector classification (SVC) and support vector 

regression (SVR)), k-nearest neighbors (KNN), extreme gradient boosting (XGBoost), and deep neural networks 

(DNN). The models for RF, SVC, SVR, KNN, and XGBoost were built using scikit-learn and the XGBoost library 

(v 1.5.1), while DNN models were created using TensorFlow (v 2.9.1) [35]. Hyperparameter optimization for RF, 

SVC, SVR, KNN, and XGBoost models was carried out using Bayesian optimization with five-fold cross-
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validation (CV) from the scikit-optimized library (v 0.8.1). For DNN models, both hyperparameter tuning and 

network architecture optimization were performed using custom scripts in Keras Tuner (v 1.1.1) [36], utilizing 

Bayesian optimization with five-fold CV.  

The three types of models were trained using the respective datasets: regression models (Dataset 1), binary 

classification models (Dataset 2), and multiclass classification models (Datasets 3 and 4). Internal validation for 

regression models included metrics such as the coefficient of determination (R²), cross-validated correlation 

coefficient (Q²), and root mean square error (RMSE) for both training (RMSEint) and cross-validation (RMSECV) 

[37]. Y-scrambling, a technique for assessing model robustness, was applied by generating 100 models with 

randomly shuffled data, keeping the same hyperparameters. The external predictive power of regression models 

was evaluated using metrics including R²ext (external R²) (Equation (1)), RMSEext (external RMSE) (Equation 

(2)) [37], Q²Fn metrics (Q²F1, Q²F2, Q²F3) (Equations (3)–(5)) [38-40], r²m metrics (r²m, r̄²m, Δr²m) (Equations 

(6) and (7)) [41, 42], and the concordance correlation coefficient (CCC) (Equation (8)) [43].  

 

𝑅 𝑒𝑥𝑡
2 = 1 −

∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑖) 2

∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦) 2

 (1) 

𝑅𝑀𝑆𝐸 𝑒𝑥𝑡 = √
∑  𝑖=1

𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑖) 2

𝑛 𝑬𝑿𝑻
 (2) 

𝑄 𝐹1
2 = 1 −

∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑖) 2

∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑇𝑅) 2

 (3) 

𝑄 𝐹2
2 = 1 −

∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑖) 2

∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑬𝑿𝑻) 2

 (4) 

𝑄 𝐹3
2 = 1 −

[∑  𝑖=1
𝑛 𝑬𝑿𝑻 (𝑦 𝑖 − 𝑦̂ 𝑖) 2]/𝑛 𝑬𝑿𝑻

[∑  𝑖=1
𝑛 𝑻𝑹 (𝑦 𝑖 − ŷ TR) 2]/n 𝐓𝐑

 (5) 

r m
2 = r 2 (1 − √(r 2 − r 0

2) ) (6) 

Δr m
2 = |r m

2 − r′ m
2

| (7) 

CCC =
2 ∑  i=1

n 𝐄𝐗𝐓 (yi − y)(ŷi − ŷ)

∑  i=1
n 𝐄𝐗𝐓 (yi − y) 2 + ∑  i=1

n 𝐄𝐗𝐓 (ŷi − ŷ) 2 + n 𝐄𝐗𝐓(ŷi − ŷ) 2
 (8) 

 

In Equations (1) to (8), TR stands for the training set, and EXT refers to the test set, or external set. The symbol 

yi  represents the actual experimental data, while yi indicates the predicted values. The average of the experimental 

data is given by yˉi, and the average of the predicted data is denoted as y. The coefficients 𝑟20 and 𝑟2 represent 

the determination coefficients of the regression function based on the experimental and predicted values for the 

external set. r02 is calculated when the regression line is forced through the origin, whereas r2 does not impose 

this condition. The coefficient r2m is determined by using the experimental values on the y-axis, while 𝑟′2𝑚 uses 

the same values on the x-axis. The final value for rm2 is the average of rm2 and r'2m. 

 

hi = xi
T(X TX) −1xi (9) 

h ∗=
3(m + 1)

p
 (10) 

The applicability domain of the regression-based models was assessed using the leverage approach [44]. Leverage 

values (hi) were calculated as per Equation (9), where X represents the matrix of key molecular descriptors from 

the training set, and xi is the descriptor vector for a query molecule. The threshold value, h*, was determined from 
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Equation (10), where m is the number of features and p the number of training molecules. Feature importance was 

evaluated via scikit-learn’s permutation importance method, using 30 repetitions. 

For model evaluation, the following metrics were employed: balanced accuracy, recall, precision, F1-score, 

Matthews correlation coefficient (MCC), and ROC (receiver operating characteristics) curve area (ROC_AUC). 

These metrics were derived from confusion matrices that contain values for true-positive (TP), true-negative (TN), 

false-positive (FP), and false-negative (FN) results. Sensitivity (or recall) was defined as Sensitivity = TP/(TP + 

FN), and specificity as Specificity = TN/(TN + FP). Balanced accuracy, the average of sensitivity and specificity, 

is particularly useful for imbalanced datasets and was calculated as BA = (Sensitivity + Specificity)/2. Precision 

was calculated as Precision = TP/(TP + FP), and the F1-score as the harmonic mean between precision and recall, 

F1 = 2 × (Precision × Recall)/(Precision + Recall). The MCC provides an overall summary of model performance 

across all confusion matrix categories. A value greater than 0 for MCC indicates good performance across all 

categories. The ROC curve plots true-positive rates against true-negative rates at various thresholds, with 

ROC_AUC quantifying the model’s ability to rank randomly chosen positive examples higher than negative ones. 

For multiclass models, macro-averages were used for ROC_AUC, precision, recall, and F1-score, calculated via 

a one-vs-rest approach. 

External validation of the models was carried out by generating a decoy dataset with the DUD-E server and 

combining it with an external validation set [45]. For interpreting atomic-level contributions to the model’s 

predictions, similarity maps were created using the RDKit method based on Riniker et al.’s approach [46]. 

Chemical space projections from virtual screening of the SPECS database [47] were visualized using self-

organizing maps, as described in earlier work [20].  

Results and Discussion 

Data for model construction 

The structural and activity data for SIRT2 inhibitors were gathered from the ChEMBL database and relevant 

literature (see materials and methods section), yielding 1797 unique records. Due to differences in testing across 

various isoforms, such as SIRT1 and SIRT3, the initial dataset was divided into four subsets (Datasets 1–4) 

(Figures 2 and 3, and Table 1). Dataset 1 was specifically designed for developing a regression-based QSAR 

model, while Datasets 2 through 4 were used to construct several types of classification models. The distribution 

of activity values (pIC50 in Dataset 1) and the classification across different activity categories in Datasets 2–4 

are presented in Figure 2, with a detailed overview of each dataset’s characteristics provided in Table 1. 

 

 
a) 
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b) c) 

Figure 2. Summary Statistics for the Datasets Used in the Analysis. (a) Principal component analysis (PCA) 

of the chemical space across the datasets. The PCA plots were generated based on the descriptors and 

fingerprints used in the final machine learning (ML) models. (b) The distribution of data within each dataset. 

(c) Breakdown of the datasets according to Lipinski’s Rule of Five. 

 

 
Figure 3. Overview of the Protocol for ML Model Development and Validation. 

 

Table 1. Description of the datasets. 

Dataset 
Number of 

Compounds 

Measured Activity 

Metric(s) 

Target Sirtuin 

Protein(s) 
Classified Activity Categories 

Dataset 1 1002 pIC50 SIRT2 pIC50 (continuous values) 

Dataset 2 1797 pIC50 and Inhibition % SIRT2 Active or Inactive 

Dataset 3 984 Inhibition % SIRT1 and SIRT2 Selective, Non-selective, or Inactive 

Dataset 4 612 Inhibition % SIRT2 and SIRT3 Selective, Non-selective, or Inactive 

 

Dataset 1 was specifically created using compounds with known SIRT2 inhibitory activity, measured as pIC50 

values. It included 1002 compounds, with pIC50 values ranging between 4 and 7.96. The largest dataset, Dataset 

2, consisted of 1797 compounds, containing both pIC50 and Inh% activity data. Based on the criteria in materials 

and methods section, the compounds in Dataset 2 were divided into two categories—SIRT2 active and SIRT2 

inactive—with approximately one-third of the compounds labeled as inactive (Figure 2). 

Dataset 3 was composed of compounds that had reported inhibitory activity against both SIRT1 and SIRT2, 

expressed as either pIC50 or Inh%, while Dataset 4 included compounds with inhibitory data for both SIRT2 and 

SIRT3, measured as pIC50 or Inh%. Therefore, Datasets 3 and 4 were categorized into three groups: compounds 

that were inactive against both SIRT1(3) and SIRT2, SIRT2-selective compounds, and non-selective compounds 

that inhibited both SIRT1(3) and SIRT2 (Figure 2 and Table 1). It is important to note that the bioactivity values 

in this study were collected from various experimental methods (such as fluorimetric, luminescence, 

electrophoretic mobility shift, and scintillation counting assays) and experimental conditions (e.g., variations in 
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incubation times and acetyl–lysine substrates with different Km values). To minimize variability due to these 

factors and clarify the class distinctions, compounds with activity values near the ambiguous boundary between 

classes were excluded from Datasets 2–4. These compounds, labeled as “twilight zone” compounds, had activity 

values in the IC50 range of 50–90 µM (for Inh% criteria, refer to materials and methods section). The increasing 

use of large-scale QSAR models based on diverse ChEMBL datasets has led to studies employing similar data 

gathering and processing approaches as this study [48-53]. 

The descriptive analysis of the datasets showed that most of the compounds followed Lipinski’s Rule of Five, 

though some outliers were observed in each dataset (Figure 2) [54]. The compounds were pre-processed, and 

molecular descriptors and fingerprints were generated as described in materials and methods section. Prior to 

model creation, the datasets were divided into training and test subsets using stratified random sampling (70% for 

training and 30% for testing), ensuring balanced activity distributions. Principal component analysis (PCA) 

confirmed that this sampling approach maintained comparable coverage of chemical space between the training 

and test datasets (Figure 2). To address the slight imbalance in the classification datasets (Datasets 2–4), the 

SMOTE algorithm was applied to generate synthetic samples of the minority classes before training the 

classification models. 

 

Model building and evaluation 

This work involved creating a range of machine learning models for regression, binary classification, and 

multiclass classification tasks. These models combined five algorithms—random forest (RF), support-vector 

machines (SVM, encompassing support-vector classification (SVC) and support-vector regression (SVR)), k-

nearest neighbors (KNN), extreme gradient boosting (XGBoost), and deep neural networks (DNN)—with four 

different molecular representation types (Mordred descriptors, ECFP4 fingerprints, ECFP6 fingerprints, and 

MACCS keys) (details in materials and methods section). ECFP and MACCS fingerprints stand out in recent 

cheminformatics literature as the most widely used due to their computational efficiency and proven effectiveness 

across numerous studies [21]. This popularity and performance record were the key factors influencing their 

inclusion here. The study's overall pipeline is shown in Figure 3. Models specific to each dataset (regression or 

classification) underwent training with hyperparameter optimization via Bayesian methods and five-fold cross-

validation. For the DNN architectures, a broader search covering structural parameters (such as hidden layer count, 

neuron numbers, and dropout rates) was implemented using Keras Tuner and Bayesian optimization. Initial 

assessment of the tuned models relied on internal and cross-validation metrics. Generalization capability was then 

tested on an independent external test set. The highest-performing models were chosen through a consensus 

strategy, supplemented by task-specific additional evaluations described in the following subsections. These top 

models ultimately formed the basis of the SIRT2i_Predictor system (Figure 3). 

 

Regression models 

Global QSAR regression models for Dataset 1 were built by systematically pairing the five algorithms with each 

of the four molecular feature sets (MACCS, ECFP4, ECFP6 fingerprints, and Mordred descriptors [34]). A feature 

selection step (materials and methods section) reduced the Mordred set to 52 descriptors for final use, while all 

fingerprint bits were retained without pruning. Training incorporated Bayesian hyperparameter tuning with five-

fold cross-validation. Preliminary quality checks used standard internal metrics: training-set coefficient of 

determination (R²), cross-validated Q², training RMSE (RMSEint), and cross-validation RMSE (RMSECV). 

Model acceptance followed the established thresholds of Golbraikh and Tropsha (R² > 0.6 and Q² > 0.5) [55]. To 

rule out overfitting or chance correlations, Y-scrambling was conducted by training 100 models on activity-

permuted data. Results confirmed that performance was genuine and the models were trustworthy (Figure 4). 
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a) b) c) 

Figure 4. Top Regression-Based Model: XGBoost: ECFP4. (a) Comparison between predicted and 

experimental pIC50 values. (b) Results from the Y-scrambling test. (c) The model's applicability domain, 

with the dashed line indicating the leverage threshold (h*). 

 

External validation was carried out to evaluate how the models performed when tested on data outside the training 

set. In line with the guidelines set by the Organization for Economic Co-operation and Development (OECD), 

external validation of QSAR models was done by calculating the goodness-of-fit using two main parameters: the 

coefficient of determination (𝑅²𝑒𝑥𝑡, which should be greater than 0.6) and the root mean square error (RMSEext, 

where a lower value indicates better performance) [38, 56]. All the models demonstrated similar performance on 

these metrics, with models using ECFP4 and ECFP6 fingerprints showing a slight edge (Table 2). However, as 

previous studies have suggested, relying solely on 𝑅²𝑒𝑥𝑡 can sometimes lead to an overly optimistic view of the 

model's ability to predict external data. This is because the 𝑅²𝑒𝑥𝑡 value is influenced by factors such as the 

response value range and distribution in the test set compared to the training set [43, 57, 58]. As a result, additional 

evaluation steps were employed to assess the external predictive ability of the QSAR models. These evaluations 

focused on factors like precision (the variation of observations from the fitting line), accuracy (how close the 

regression line is to the ideal slope of 1 in the Yobserved vs. Ypredicted plot), and ensuring there was no bias in 

the response scale [43, 58]. Additional metrics like 𝑟̲²𝑚 (where 𝑟̲²𝑚 > 0.5 and Δ𝑟²𝑚 < 0.2) [41, 42], the 𝑄²𝐹𝑛 

metric, and Concordance Correlation Coefficient (CCC) values with thresholds defined by Chirico and Gramatica 

(𝑄²𝐹1, 𝑄²𝐹2, 𝑄²𝐹3 > 0.7, CCC > 0.85) were also applied (Table 2) [43, 59]. Furthermore, the criteria from 

Golbraikh and Tropsha were also assessed, including the following: ((𝑅²−𝑅²₀)/𝑅² < 0.1 or (𝑅² − 𝑅′²₀)/𝑅² < 0.1, 

0.85 ≤ k (or k’) ≤ 1.15, and |𝑅²−𝑅′²₀| < 0.3) [55]. The majority of the models met almost all of these criteria, though 

some models failed to meet the Δ𝑟²𝑚 and CCC benchmarks (Table 2). After eliminating models that did not meet 

these criteria, two of the top-performing models were selected: the XGBoost: ECFP4 model (Figure 4) and the 

KNN: ECFP6 model (Table 2). 

 

Table 2. External Validation Parameters for Regression-Based QSAR Models. 

ML 

Algorithm 

Molecular 

Feature 
R²ext RMSEext R²m ΔR²m Q²F1 Q²F2 Q²F3 CCC 

RF Descriptors 0.7 0.55 0.52 0.27 0.7 0.7 0.7 0.81 

 ECFP4 0.75 0.5 0.6 0.23 0.75 0.75 0.75 0.85 

 MACCS 0.71 0.53 0.55 0.26 0.71 0.71 0.71 0.82 

 ECFP6 0.77 0.48 0.62 0.21 0.77 0.77 0.76 0.86 

SVR Descriptors 0.62 0.61 0.44 0.31 0.62 0.62 0.62 0.77 

 ECFP4 0.74 0.51 0.63 0.13* 0.74 0.74 0.73 0.84 

 MACCS 0.68 0.57 0.55 0.21 0.68 0.68 0.68 0.81 

 ECFP6 0.74 0.51 0.63 0.18* 0.74 0.74 0.74 0.86 

XGBoost Descriptors 0.67 0.58 0.53 0.25 0.68 0.68 0.68 0.82 

 ECFP4 0.75 0.5 0.64 0.17 0.74 0.74 0.74 0.86 
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(0.79)b (0.46)b (0.7)b (0.17)*,b (0.75)b (0.75)b (0.74)b (0.86)a,b 

 MACCS 0.71 0.53 0.58 0.24 0.7 0.7 0.7 0.82 

 ECFP6 0.73 0.52 0.62 0.2 0.73 0.73 0.73 0.87 

KNN Descriptors 0.68 0.56 0.56 0.23 0.68 0.68 0.68 0.86 

 ECFP4 0.74 0.51 0.64 0.13* 0.74 0.74 0.74 0.87 

 MACCS 0.6 0.63 0.47 0.16* 0.6 0.6 0.6 0.79 

 ECFP6 
0.76 

(0.77)b 

0.49 

(0.48)b 

0.66 

(0.68)b 

0.12 

(0.11)*,b 

0.76 

(0.76)b 

0.76 

(0.76)b 

0.76 

(0.76)b 

0.87 

(0.87)a,b 

DNN Descriptors 0.66 0.58 0.57 0.03* 0.66 0.66 0.66 0.81 

 ECFP4 0.74 0.51 0.63 0.18* 0.73 0.73 0.73 0.84 

 MACCS 0.68 0.56 0.56 0.16* 0.68 0.68 0.67 0.80 

 ECFP6 0.73 0.52 0.63 0.17* 0.73 0.73 0.73 0.81 

Criteria >0.6  >0.5 <0.2 >0.7 >0.7 >0.7 >0.85 

 

Validation of regression models 

In accordance with OECD guidelines, it is crucial to establish the boundaries of chemical space within which the 

model can make reliable predictions. This is referred to as the applicability domain (AD) of the QSAR model, 

which should be clearly defined during external validation. These boundaries must be considered when predicting 

unknown compounds [38, 44, 56]. One widely applied method to estimate these boundaries in regression QSAR 

models is the leverage method [44]. Leverage values represent how far each compound is from the central point 

(centroid) of the training set in the feature space. These values are typically displayed in Williams plots, which 

plot leverage against standardized residuals, making it easy to identify compounds that exceed the thresholds for 

leverage or residuals (Figure 4). 

For two of the top-performing models (XGBoost: ECFP4 and KNN: ECFP6), a number of compounds from the 

test set were found to be outside the applicability domain (Table 2 and Figure 4). The KNN: ECFP6 model had 

a more constrained coverage of chemical space, with 39 test compounds outside the AD, while the 

XGBoost:ECFP4 model only had 24 compounds falling outside its boundaries. When compounds outside the AD 

were excluded, the performance of the XGBoost: ECFP4 model improved substantially, whereas the KNN:ECFP6 

model showed minimal improvement (Table 2). This suggests that the KNN:ECFP6 model has less predictive 

power and narrower chemical space coverage within the AD. Additionally, the KNN: ECFP6 model exhibited 

lower robustness during internal validation. 

Given that global QSAR models are intended to cover a wider range of chemical space and provide robust and 

accurate external predictions, the XGBoost: ECFP4 model was selected for further development. However, it is 

important to note that the regression models were trained on Dataset 1, which consists mostly of active compounds 

(914 active compounds, compared to only 88 compounds in the "twilight zone" (IC50 = 50–90 µM) or "inactive" 

(IC50 > 90 µM) categories) (materials and methods section). Therefore, these models are primarily suitable for 

predicting the pIC50 values of active compounds or compounds identified as likely active by classification 

models. This limitation is discussed in more detail in Section “SIRT2i_predictor framework for discovering novel 

inhibitors”. Furthermore, the diversity in data sources contributing to the ChEMBL database may lead to 

inconsistencies that affect the prediction accuracy of the regression models [48]. For this reason, classification-

based models, which do not rely on these issues, might offer better performance in identifying active compounds. 

 

Binary classification models 

As outlined in the study protocol (Figure 3), five different machine learning algorithms, in combination with four 

molecular features, were tested using Bayes hyperparameter optimization and five-fold cross-validation (CV) to 

develop binary classification models with Dataset 2. The goal was to train models to classify compounds as SIRT2 

inhibitors or inactive compounds. The criteria for assigning compounds to these categories are provided in 

materials and methods section. Before training, the Mordred descriptors underwent a feature-selection process 

(see materials and methods section). The final modeling used 233 selected Mordred descriptors, and molecular 

fingerprints were utilized without further reduction in the number of bits. 

The models’ internal predictive power, stability, and robustness were assessed using internal validation metrics. 

The performance of the binary classification models was evaluated using an external test set, where the following 
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metrics were used: balanced accuracy (BA), Matthews correlation coefficient (MCC), area under the receiver 

operating characteristic curve (ROC_AUC), precision, recall, and F1-score (Table 3). In general, the algorithms 

performed similarly on the external test set, with the RF, SVC, and DNN models, especially those using 

descriptors, showing slightly better external predictive power. 

 

Table 3. Parameters for external validation of the binary classification models. 

ML Algorithm Molecular Feature BA MCC ROC_AUC Precision Recall F1 

RF Descriptors 0.88 0.74 0.94 0.86 0.88 0.87 
 ECFP4 0.84 0.66 0.92 0.82 0.84 0.83 
 MACCS 0.82 0.62 0.91 0.8 0.82 0.81 
 ECFP6 0.85 0.68 0.92 0.83 0.85 0.84 

SVR Descriptors 0.88 0.74 0.95 0.87 0.88 0.87 
 ECFP4 0.81 0.63 0.9 0.82 0.81 0.82 
 MACCS 0.8 0.59 0.87 0.79 0.8 0.79 
 ECFP6 0.79 0.62 0.9 0.83 0.79 0.81 

XGBoost Descriptors 0.86 0.72 0.94 0.85 0.86 0.85 
 ECFP4 0.81 0.62 0.91 0.8 0.81 0.81 
 MACCS 0.8 0.60 0.9 0.8 0.8 0.8 
 ECFP6 0.81 0.62 0.91 0.81 0.81 0.81 

KNN Descriptors 0.79 0.56 0.88 0.77 0.79 0.77 
 ECFP4 0.82 0.62 0.9 0.8 0.82 0.81 
 MACCS 0.82 0.62 0.88 0.8 0.82 0.81 
 ECFP6 0.84 0.65 0.91 0.81 0.84 0.82 

DNN Descriptors 0.89 0.75 0.94 0.85 0.86 0.86 
 ECFP4 0.83 0.65 0.91 0.8 0.81 0.8 
 MACCS 0.8 0.58 0.89 0.8 0.8 0.8 
 ECFP6 0.82 0.64 0.9 0.79 0.82 0.8 

a This paper reports the average performance values for each class. 

 

In the field of virtual screening (VS), the aim is often to identify active molecules from vast databases that are 

predominantly filled with inactive compounds. Machine learning (ML) models used in VS are considered more 

effective if they can cover a wider chemical space, as the primary goal is to uncover novel and diverse active 

compounds. A binary model trained on the largest dataset, Dataset 2, is expected to offer the broadest chemical 

space coverage, thus making it more advantageous for VS tasks compared to those trained on smaller datasets. To 

further test the relevance of these models for practical applications, a real-life VS simulation was carried out by 

generating almost 20,000 virtual decoy molecules, which were assigned to the inactive class. These decoys were 

crafted to be structurally dissimilar from known active compounds while keeping similar physical properties. The 

decoy dataset was then combined with an external set to create an imbalanced database with a 1:40 ratio of active 

to inactive compounds. The models were evaluated on their ability to retrieve the active molecules. 

In these conditions, statistical parameters were re-calculated by incorporating early enrichment metrics (Table 4). 

These metrics are crucial because early identification of active compounds is a key aspect of VS, where only the 

top-ranked compounds are selected for experimental testing. Early recognition is an important indicator of a 

model’s ability to identify active compounds quickly in the ranking process. We applied ROC EF 0.5%, 1%, 2%, 

and 5%, which assess the coverage area under the curve for 0.5%, 1%, 2%, and 5% of false positives, respectively 

[20, 60]. Given that the decoy set contained a far greater number of chemically diverse inactive compounds, the 

RF: ECFP4 binary model stood out as having the strongest predictive performance (Table 4 and Figure 5). In 

the highly imbalanced decoy dataset, the RF: ECFP4 model not only demonstrated better sensitivity, specificity, 

precision, and overall robustness, but it also excelled in early recognition. With only 0.5% false positives, this 

model managed to retrieve more than 70% of the true active molecules (Table 4). It is noteworthy that most of 

the inactive compounds in Dataset 2 were chemically similar to the active ones, whereas the decoy dataset was 

enriched with compounds that were topologically distinct. Since the decoy dataset provided a more reliable 

assessment of model performance in VS settings, the RF: ECFP4 model was chosen for further analysis. 
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a) b)  

Figure 5. ROC curves for the leading RF: ECFP4 binary model. (a) Results of the external validation; (b) 

Validation results using the decoy dataset; (c) Validation results after applicability-domain modifications on 

the decoy dataset. 

 

Table 4. Performance metrics for the binary models tested on the decoy dataset. 

ML Algorithm 
Molecular 

Feature 
BA MCC 

ROC_ 

AUC 

Precision 

(a) 

Recall 

(a) 
F1 (a) EF05% EF1% EF2% EF5% 

Random Forest 

(RF) 
Descriptors 0.68 0.09 0.87 0.51 0.68 0.35 0.63 0.67 0.68 0.73 

 ECFP4 
0.81  

(0.9) b 

0.19  

(0.52) b 

0.87  

(0.89) b 

0.53  

(0.67) b 

0.81 

(0.9) b 

0.49 

(0.73) b 

0.74 

(0.74) b 

0.74 

(0.74) b 

0.76 

(0.76) b 

0.77 

(0.8) b 
 MACCS 0.66 0.08 0.82 0.51 0.66 0.35 0.55 0.56 0.59 0.62 
 ECFP6 0.75 0.14 0.87 0.52 0.75 0.43 0.72 0.74 0.76 0.78 

Support Vector 

Regression 

(SVR) 

Descriptors 0.69 0.1 0.89 0.51 0.69 0.36 0.43 0.56 0.62 0.71 

 ECFP4 0.46 −0.06 0.8 0.48 0.46 0.05 0.75 0.75 0.75 0.76 
 MACCS 0.62 0.06 0.83 0.51 0.62 0.32 0.39 0.61 0.68 0.74 
 ECFP6 0.47 −0.07 0.8 0.47 0.47 0.03 0.76 0.76 0.77 0.77 

XGBoost Descriptors 0.71 0.11 0.85 0.51 0.71 0.39 0.41 0.44 0.48 0.54 
 ECFP4 0.74 0.13 0.87 0.52 0.74 0.42 0.35 0.39 0.43 0.52 
 MACCS 0.64 0.07 0.73 0.51 0.64 0.32 0 0 0.02 0.2 
 ECFP6 0.71 0.11 0.85 0.51 0.71 0.39 0.37 0.38 0.44 0.5 

K-Nearest 

Neighbors 

(KNN) 

Descriptors 0.66 0.08 0.76 0.51 0.66 0.37 0.09 0.23 0.26 0.29 

 ECFP4 0.72 0.12 0.8 0.52 0.72 0.41 0 0 0 0 
 MACCS 0.64 0.07 0.75 0.51 0.64 0.33 0 0 0 0 
 ECFP6 0.72 0.11 0.8 0.52 0.72 0.41 0 0 0 0 

Deep Neural 

Networks 

(DNN) 

Descriptors 0.72 0.12 0.8 0.51 0.71 0.38 0 0 0 0 

 ECFP4 0.73 0.13 0.84 0.52 0.73 0.43 0.1 0.25 0.32 0.41 
 MACCS 0.69 0.1 0.79 0.51 0.62 0.29 0.04 0.08 0.17 0.23 
 ECFP6 0.67 0.09 0.81 0.51 0.67 0.38 0.17 0.25 0.34 0.43 

a The table shows average values for all classes. b The values in parentheses indicate the performance after applicability domain adjustments. 

 

The applicability domain for the selected models was established using the indeterminate-zone approach [61-63]. 

Predictions that fall within this "indeterminate zone" (in-zone predictions) are deemed uncertain, whereas those 

outside this zone are considered more reliable. For binary models, the indeterminate zone was set as a prediction 

probability range of 0.5 ± 0.1 for each class. When applicability-domain corrections were applied, the RF: ECFP4 

model's performance showed substantial improvement (Table 4 and Figure 5). 
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Multiclass classification models 

SIRT1 and SIRT3 are the closest homologues of SIRT2, all grouped in Class I, which complicates the 

development of selective inhibitors for SIRT2 [64]. Recent studies have linked the safety of SIRT2 inhibitors to 

their selectivity, making selectivity a key factor in the design of novel SIRT2 inhibitors [19]. A large portion of 

the structure-activity data in ChEMBL involves molecules with activity against multiple sirtuin isoforms, with a 

particular focus on SIRT1 and SIRT3. However, the subset of SIRT2 inhibitors with activity data for SIRT1 or 

SIRT3 is much smaller and more imbalanced, which could hinder the effectiveness of models trained on these 

data (Figure 2). The primary objective of this section was to create and validate models that predict the selectivity 

of potential inhibitors. 

As per the established protocol (Figure 3), a variety of machine learning (ML) algorithms and molecular features 

were used to construct and assess selectivity models. Two separate models were built: one for predicting SIRT1/2 

selectivity and the other for SIRT2/3 selectivity. Due to the limited number of compounds with data for all three 

isoforms and the significant class imbalances, a combined SIRT1/2/3 model was not developed. For the SIRT1/2 

selectivity model, 270 Mordred descriptors were selected, while 316 descriptors were chosen for the SIRT2/3 

model. No reduction in the number of bits was applied to the fingerprints. These models were designed to classify 

compounds into different groups: selective SIRT2 inhibitors, non-selective SIRT1/2 or SIRT2/3 inhibitors, and 

inactive compounds (Figure 2). As with the binary VS models, both external and internal validations were 

conducted using the same statistical parameters (Figure 6). Internal validation results showed strong predictive 

performance of the trained models. Interestingly, models using molecular descriptors outperformed those based 

on fingerprints in external validation with the test set, particularly for Random Forest (RF), Deep Neural Networks 

(DNN), and Support Vector Classifier (SVC) approaches. This suggests that the physicochemical properties 

encoded in the descriptors were more influential in determining selectivity than the structural features provided 

by the fingerprints. Notably, the DNN models showed the best overall performance, especially for the SIRT2/3 

selectivity model, indicating that deep learning models were better able to leverage the limited training data 

available in Dataset 4, the smallest dataset (Figure 6a). 

 

 
a) 
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b) 

Figure 6 illustrates the predictive performance summary for multi-class selectivity models, highlighting the 

best-performing model for each feature type. Panel (a) shows parameters from the external (test) set 

validation, while Panel (b) displays parameters from the decoy set validation. Precision, recall, and F1 scores 

across all panels are presented as macro averages. 

 

The practical utility of these selectivity models could be realized by using them to predict outcomes for a large 

number of inactive compounds. However, the limited chemical space coverage of the true inactive compounds 

within Datasets 3 and 4 might restrict how broadly these models can be applied. To better simulate real-world 

usage against many inactive compounds, the models were additionally tested on decoy datasets (with an active-

to-inactive ratio of 1:40), similar to how binary models are evaluated. This enrichment of the inactive class in the 

decoy set caused a minor shift in the models’ predictive metrics. 

Interestingly, the analysis using the decoy set showed that ECFP4 molecular representations offered an advantage 

for the SIRT1/2 models (Figure 6b). Following the decoy set evaluation, the RF: ECFP4 SIRT1/2 model was 

clearly superior to the other tested models. A similar pattern emerged for the SIRT2/3 models, where the RF: 

ECFP4 SIRT2/3 model also showed improved predictive accuracy on the decoy set. However, for the SIRT2/3 

models, the results were less definitive, as the DNN:descriptors SIRT2/3 model performed comparably (Figure 

6b). It is important to note that the SIRT2/3 models generally performed poorly on the decoy sets that were 

specifically constructed to be highly imbalanced by maximizing the 2D topological dissimilarity among the decoy 

compounds. This suggests the utility of the SIRT2/3 models may be limited only to compounds that are 

topologically similar to those already known to be active. The generally weaker performance of the SIRT2/3 

models on the decoy dataset is likely due to the restricted size and chemical diversity of the training data used. 

To further investigate the viability of these chosen models, applicability domains (AD) were established. 

Mirroring the approach used for binary models, the indeterminate-zone method was employed to define the AD 

for the selectivity models. Given that these models yield three class outcomes, the AD for confident predictions 

was defined as having a probability greater than 0.5 for the predicted class. When only data points falling within 

this AD were considered, the SIRT1/2 model experienced the most significant boost in predictive statistics 

(Figure 6b). In contrast, the two promising SIRT2/3 models that performed similarly on the decoy set (RF: ECFP4 

SIRT2/3 and DNN:descriptors SIRT2/3) saw only minor statistical improvements after AD refinement (Figure 

6b). However, the DNN model achieved substantially better coverage, encompassing nearly 19,000 compounds 

within the AD boundaries, compared to about 9,000 for the RF model, which led to its selection for subsequent 

work. 

In conclusion, the SIRT1/2 model demonstrated superior predictive capability, while the SIRT2/3 models 

exhibited lower quality when assessing compounds with topological differences. The primary reason for this 

difference is probably related to the variation in the size of the datasets used. Considering these limitations 

regarding dataset scale and diversity, alongside model quality, the SIRT1/2 and SIRT2/3 selectivity models are 

best suited to serve as secondary tools for analyzing the selectivity of virtual screening results that have already 

been predicted by the more accurate binary models. Any conflicting predictions—for instance, when a binary 
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model classifies a compound as active, but a selectivity model deems it inactive—that occur within the models’ 

applicability domains should be approached cautiously. In such conflicting scenarios, the selectivity models 

(particularly the SIRT1/2 model) can be utilized as an additional means to confirm a compound’s activity. 

 

SIRT2i_predictor framework for discovering novel inhibitors 

To enhance accessibility and promote the optimal use of the developed models, a comprehensive framework for 

predicting the activity and selectivity of novel compounds was designed. This framework was integrated into a 

Python-based application called SIRT2i_Predictor. The structure of SIRT2i_Predictor, as shown in Figure 7, 

comprises four main components: (1) a module selector, (2) a SMILES preprocessor, (3) predictors, and (4) 

analyzers. In addition to this, a user-friendly web-based graphical user interface (GUI) was developed to make 

SIRT2i_Predictor more accessible to the broader scientific community (Figure 8). 

 

 
Figure 7. SIRT2i_Predictor framework. 

 

 
Figure 8. Overview of the core features of SIRT2i_Predictor. 

 



Rahman et al., SIRT2i_Predictor: A Machine Learning-Driven Approach for Accelerating the Discovery of Selective SIRT2 

Inhibitors in Age-Related Disease Therapeutics 

 

 

329 

The VS module accepts input via CSV files containing compounds, optionally with associated compound IDs, 

with a size limit of 200 MB. These SMILES strings are automatically prepared for prediction by a dedicated 

SMILES pre-processor. The predictor within the VS module is based exclusively on the binary-classification RF: 

ECFP4 model. The selectivity models, particularly the SIRT2/3 model, showed restricted usefulness on the decoy 

set compared to the binary model, which is likely due to the restricted size and lack of diversity in their respective 

training datasets (refer to Section “Multiclass classification models”). Conversely, regression models, which were 

predominantly trained on active compounds, might not be the optimal choice for general VS tasks. Given the 

scarcity of inactive compounds in the training set (as detailed in Section “Validation of regression models”), the 

regression model could, however, serve as a useful analytical instrument for a focused examination of compounds 

previously flagged as active by the binary model. Consequently, the binary RF: ECFP4 classification model was 

chosen as the primary virtual-screening model because it utilized the largest and most varied dataset and 

demonstrated superior performance in practical application. The output from the VS module is a generated CSV 

file detailing the screened molecules, along with their predicted probabilities and class assignments (“Yes” if 

predicted as an inhibitor, “No” otherwise) (Figure 8). This capability can significantly aid in prioritizing 

compounds and reducing expenses in extensive in vitro screening efforts. 

The second component, the SMILES-Analyzer, is designed for a deeper examination of the results generated by 

the VS module, although it can be utilized independently to analyze specific compounds of interest. This module 

requires a list of SMILES strings to be manually entered by the user into an input field (Figure 8). The predictor 

here incorporates all four established Machine Learning models: the binary RF: ECFP4 model, the regression 

XGBoost: ECFP4 model, the selectivity RF:ECFP4 SIRT1/2 model, and the DNN:descriptors SIRT2/3 model. 

Different analyzers then provide the user with comprehensive reports on the predicted potencies and selectivity 

levels of the compounds identified as potential inhibitors (Figure 7). The fundamental purpose of the SMILES-

Analyzer is to facilitate the analysis and final selection of VS results slated for subsequent experimental validation. 

Similar to the VS module, the SMILES-Analyzer can process a large volume of compounds. However, the 

necessity for each model to receive specific input formats means that the preprocessing step in this module 

demands greater computational time, which could pose a challenge when screening very extensive databases. 

Beyond generating textual and numerical summaries of the predictions from all four ML models, the SMILES-

Analyzer also facilitates an in-depth, individual inspection of each compound through graphical representations 

(Figure 8). These graphical interpretations include: a radar chart summarizing the predictions from all four 

models; a histogram of predicted probabilities to gauge the confidence level (applicability domain) of the 

classification model outputs; a leverage plot to assess the confidence (applicability domain) of the 

pIC50\text{pIC}_{50}pIC50 predictions; and maps illustrating the per-atom contributions (both positive and 

negative) to the predicted SIRT2 activity (derived from both regression and binary models) (Figure 8). These 

atomic-contribution maps are based on the similarity maps concept, where the impact of each atom is quantified 

by comparing the predicted probabilities before and after removing the bits in the fingerprint corresponding to 

that atom [46]. Furthermore, the Graphical User Interface (GUI) provides predictions for the most chemically 

similar compounds within the ChEMBL database, calculated using Tanimoto similarity and ECFP4 fingerprints. 

This Tanimoto analysis is included specifically to help evaluate the confidence of the SIRT2/3 selectivity 

predictions, as the DNN:descriptors SIRT2/3 model exhibited restricted applicability on the chemically diverse 

decoy set (see Section “Multiclass classification models”). Consistent with the VS module, the SMILES-Analyzer 

module also produces a final tabular report (as a CSV file) detailing the predictions for all molecules entered. 

 

Benchmarking SIRT2i_predictor against structure-based virtual screening (SBVS) 

In a recent study, our team introduced an innovative structure-based virtual screening (SBVS) method that utilizes 

multiple conformational states of SIRT2, discovered through intensive simulations of the binding-pocket 

dynamics [20]. By employing different binding-pocket conformations, this approach outperformed traditional 

single-structure methods in terms of validation metrics and expanded the chemical space coverage for virtual hits. 

To evaluate whether SIRT2i_Predictor could similarly expand the chemical space of virtual hits, we repeated the 

prospective SBVS campaign from the previous study, which involved screening approximately 200,000 

compounds from the SPECS database [47]. Chemical space coverage was analyzed using self-organizing maps 

and compared between the two methods. The binary models in SIRT2i_Predictor notably expanded the chemical 

space of virtual hits, surpassing the chemical space covered by known SIRT2 inhibitors (Figure 9a). While the 

chemical space expansion was slightly less than that achieved by SBVS, SIRT2i_Predictor showed strong 
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potential as a comparable tool for identifying novel inhibitor scaffolds. To explore regions of chemical space that 

were not covered by either the SBVS or ChEMBL datasets, we selected one of the highest-ranked compounds 

that occupied an unexplored area. This compound, a thiohydantoin derivative, was predicted by SIRT2i_Predictor 

to be a non-selective SIRT2 inhibitor, with all probability values within the applicability domain (Figure 9b). 

Analyzing the structure-activity relationship using similarity maps revealed that the thiohydantoin scaffold played 

a key role in the predicted activity (Figure 9c). Interestingly, no thiohydantoin derivatives had been previously 

identified as sirtuin inhibitors, further confirming the ability of SIRT2i_Predictor to discover new inhibitor 

scaffolds and generate structure-activity hypotheses. Moreover, SIRT2i_Predictor’s VS module demonstrated a 

significant time advantage, screening 200,000 compounds in just minutes, in contrast to the SBVS method, which 

took several hours. 

 

 
a) 

 
 

b) c) 

Figure 9. Comparison of SIRT2i_Predictor and the multi-structure SBVS technique. (a) The chemical space 

coverage of ChEMBL SIRT2 inhibitors (left), SBVS virtual hits (middle), and SIRT2i_Predictor virtual hits 

(right) are shown side by side; (b) assessment of the probabilities for the virtual hits originating from a unique 

portion of chemical space identified by SIRT2i_Predictor (marked with a star in (a)); (c) structure-activity 

relationships derived from similarity maps for both the binary model (upper plot) and regression model 

(lower plot) for the virtual hits from this unique chemical space (star marked in (a)). Positive regions 

contributing to activity are highlighted in red, while negative regions are shown in blue. 

 

In the SBVS experiment, nine molecules identified from previously uncharted chemical spaces displayed activity 

against SIRT2. However, the IC50 values for two of the lead compounds, as well as the Inh% of five other 

compounds, fell into the "twilight zone" (IC50 = 50–90 µM; Inh%@200 µM = 40–80%) in the binary model, and 

only two compounds were unequivocally inactive. To evaluate how SIRT2i_Predictor would perform with 

compounds from this "twilight zone," the same nine molecules were re-analyzed using the SIRT2i_Predictor 

virtual screening module. The model’s predictions were in line with experimental results, with SIRT2i_Predictor 

forecasting that none of the compounds would have an IC50 below 50 μM—the threshold for active compounds 

in the binary models. Five of the compounds were marked as being outside the applicability domain, which 

corresponds to their placement in the "twilight zone" due to their origin from less explored chemical regions. The 

remaining four compounds were predicted to be inactive. 

Further evaluation of SIRT2i_Predictor was carried out using an in-house database [65, 66]. Unfortunately, 

predictions for all compounds indicated that they either fell outside the applicability domain or were classified as 

inactive. To further validate the performance of SIRT2i_Predictor, we compared these predictions with those from 

an earlier SBVS model. Four compounds that were predicted to be active by the SBVS model were subsequently 
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tested in vitro. Although some inhibitory activity against SIRT2 was observed, none of the compounds proved to 

be potent inhibitors, with three falling within the "twilight zone" and one being inactive. These results were 

consistent with SIRT2i_Predictor's predictions, which aligned with the experimental outcomes, classifying these 

compounds as either inactive or outside the applicability domain. As a positive control, we used EX-527 (IC50 

(SIRT2) = 20 µM) [67], which was not included in the training set for SIRT2i_Predictor. The model effectively 

differentiated EX-527 from the in-house compounds, and the predictions matched the experimental results. 

To sum up, SIRT2i_Predictor was shown to be effective at filtering out less potent compounds while offering a 

comparable chemical space coverage to the more computationally expensive SBVS methods. The benchmarking 

results suggest that SIRT2i_Predictor can serve as a valuable addition to SBVS tools, functioning both as a 

standalone virtual screening tool and as a rapid, convenient filtering method for prioritizing compounds after 

virtual or in vitro screening, assisting in the selection of the most promising candidates for further biological 

testing. 

Conclusion 

SIRT2 inhibitors show significant potential in treating age-related diseases, and preclinical data continues to 

support their development. However, despite increasing interest, no SIRT2 inhibitors have reached clinical trials. 

The absence of large-scale, reliable structure–activity relationship (SAR) models for predicting SIRT2 inhibitor 

potency and selectivity remains a major challenge. Such models could dramatically reduce the time and costs 

associated with developing new inhibitors. To address this, we compiled all available SAR data and built a set of 

high-quality machine-learning models for predicting the potency and selectivity of SIRT2 inhibitors. After 

extensive validation, four models were identified as top performers: the binary RF: ECFP4 and regression 

XGBoost: ECFP4 models for potency prediction, and the RF: ECFP4 SIRT1/2 and DNN:descriptors SIRT2/3 

models for selectivity prediction. 

To facilitate practical application, we developed the SIRT2i_Predictor, a Python-based tool featuring an intuitive 

web interface. The tool enables fast processing of SMILES input and can efficiently evaluate large compound 

databases for SIRT2 inhibitory potency and SIRT1–3 selectivity, which is particularly useful for virtual screening 

campaigns and prioritizing compounds for expensive in vitro studies. It also offers visualization tools to highlight 

the molecular features contributing to activity, making SIRT2i_Predictor an asset in lead optimization efforts. Our 

benchmarking study indicated that SIRT2i_Predictor complements the SBVS method recently published. The 

code for database curation, model training, and GUI development is adaptable for other pharmacologically 

relevant targets, contributing to the creation of broader in silico platforms, a direction we aim to pursue in future 

work. 
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