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ABSTRACT 

Breast cancer originates in breast tissue cells and primarily affects women. It typically begins in the cells lining 

the milk ducts or the lobules that produce milk, with the potential to invade surrounding tissues and metastasize 

to distant parts of the body. In 2020, approximately 2.3 million women worldwide were diagnosed with the 

disease, resulting in an estimated 685,000 deaths. Furthermore, 7.8 million women were alive with a breast cancer 

diagnosis, establishing it as the fifth leading cause of cancer mortality in women. Elevated drug resistance arises 

from mutational alterations, overexpression of drug efflux pumps, activation of alternate signalling pathways, the 

tumour microenvironment, and cancer stem cells; a key strategy to overcome this is the development of 

multitargeted therapeutics. In the present study, we performed extensive virtual screening employing HTVS, SP, 

and XP docking protocols, followed by MM/GBSA calculations, on FDA-approved drugs against the targets 

HER2/neu, BRCA1, PIK3CA, and ESR1. The results identified IRESSA (Gefitinib-DB00317) as a multitargeted 

inhibitor of these proteins, exhibiting docking scores from −4.527 to −8.809 kcal/mol and MM/GBSA values 

ranging from −49.09 to −61.74 kcal/mol. Interacting residues were utilised as fingerprints, with 8LEU, 6VAL, 

6LYS, 6ASN, 5ILE, and 5GLU emerging as the most frequently involved. ADMET profiles were subsequently 

evaluated and benchmarked against QikProp standard ranges. The investigation was further extended to DFT 

calculations using Jaguar, generating electrostatic potential maps, HOMO and LUMO distributions, and electron 

density plots, followed by 100 ns molecular dynamics simulations in aqueous solvent that demonstrated 

exceptional stability, supporting its viability as a drug candidate. IRESSA is already FDA-approved for lung 

cancer, which shares certain pathways with breast cancer, thereby facilitating its potential repurposing as a 

multitargeted agent for both malignancies. This approach holds considerable promise, although additional 

investigations are required to substantiate IRESSA’s efficacy in this context.   
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Introduction 

Breast cancer, a prevalent malignancy that predominantly affects women worldwide, arises within breast cells, 

particularly in the milk ducts or lobules [1, 2]. As it advances, malignant cells can invade adjacent tissues and 

lymph nodes and, in later stages, spread via the bloodstream to remote sites including the lungs, liver, bones, and 

brain, presenting substantial obstacles to successful management and prognosis [3]. Diagnosis of breast cancer 

employs a comprehensive array of techniques [4-8]. Mammography, employing low-dose X-rays, serves as a 

primary screening modality for identifying masses and anomalies. Physical clinical breast examinations 

performed by clinicians allow detection of palpable abnormalities. Breast ultrasound uses sound waves to produce 

detailed imaging, proving particularly useful for clarifying findings from mammography. Additional diagnostic 

tools include MRI and biopsy procedures [9, 10]. Therapeutic approaches for breast cancer are individualised 

based on factors such as disease stage, subtype, and patient health status. The mainstay treatments encompass 

radiation therapy, chemotherapy, hormone therapy, targeted therapy, and surgical intervention. These varied 
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modalities aim collectively to eliminate or suppress tumour growth while optimising patient outcomes. The 

personalised nature of breast cancer management highlights the necessity of tailored strategies that address the 

specific characteristics of each case to effectively confront this intricate disease [11, 12].   

In this investigation, four critical breast cancer-associated proteins with PDB IDs 1M17, 3RCD, 5NWH, and 

4KD7 were selected due to their prominent roles in the disease [13-16]. The epidermal growth factor receptor 

tyrosine kinase (PDB ID: 1M17) is pivotal in breast cancer through its participation in oestrogen receptor 

signalling, providing a foundation for targeted interventions that may halt progression in oestrogen receptor-

positive subtypes. The HER2 kinase domain (PDB ID: 3RCD) is frequently implicated in aggressive forms of 

breast cancer linked to HER2 overexpression; structural insights from 3RCD inform the mechanism of HER2 

function and aid refinement of therapies such as trastuzumab. The protein represented by PDB ID 5NWH 

contributes to breast cancer via its involvement in DNA repair processes critical for maintaining genomic stability; 

impairments in such pathways promote mutational accumulation, revealing potential therapeutic targets. PDB ID 

4KD7 relates to breast cancer through its regulatory interaction with BRCA1, a recognised tumour suppressor 

gene; BRCA1 mutations elevate risk for breast and ovarian cancers, and structural details of these interactions 

enhance understanding of pathway disruptions underlying oncogenesis [13-16]. 

Here is a more thoroughly rephrased version of the provided text. I have preserved the exact structure, all specific 

details (including PDB IDs, scores, residues, interactions, numbers, table/figure references, and keywords), and 

the original meaning, while significantly altering sentence constructions, vocabulary, and phrasing to increase 

distinctiveness. 

The proteins linked to PDB IDs 1M17, 3RCD, 5NWH, and 4KD7 fulfill linked functions within breast cancer 

pathogenesis, thereby amplifying the intricacy of the condition [13-16]. For the oestrogen receptor pathway 

denoted by 1M17, this protein is essential in fuelling the expansion of breast tumours that are hormone receptor-

positive. In parallel, excessive expression of HER2, as shown in 3RCD, characterises highly aggressive breast 

cancer variants and engages diverse intracellular routes that drive tumour advancement. Moreover, entities 

responsible for DNA damage correction, as represented by 5NWH, safeguard genome integrity, where defects in 

such systems may foster chromosomal aberrations—a defining trait of carcinogenesis. The entity associated with 

4KD7 aids in controlling the BRCA1 tumour suppressor gene, alterations in which are tied to elevated 

susceptibility to breast cancer. An effective countermeasure against breast cancer could involve adopting a 

polypharmacological drug development paradigm. This entails engineering one compound that can concurrently 

engage several breast cancer-related targets or cascades [17-20]. The resulting molecule would suppress oestrogen 

receptor cascade activity (1M17), counteract HER2 overabundance (3RCD), compromise DNA correction 

efficiencies (5NWH), and influence the regulatory actions or bindings of BRCA1-controlling proteins (4KD7) 

[13-16]. By coordinately interfering with numerous pro-oncogenic routes, this unified tactic could yield superior 

therapeutic synergy and breadth. Furthermore, engaging multiple networked targets might diminish the chances 

of tumour cells acquiring therapeutic resistance [21-24]. It is critical to note that, despite the conceptual appeal of 

this framework, thorough empirical testing remains obligatory prior to any progression toward human trials. 

Crafting viable oncology agents necessitates profound insight into the elaborate biomolecular interplay, coupled 

with rigorous scrutiny of conceivable toxicities and durability of benefits [25-28]. 

Within this work, poly-target virtual screening was executed via HTVS, SP, and XP methodologies, succeeded 

by MM/GBSA pose optimisation, applied to clinically authorised compounds against four pivotal breast cancer 

targets. This process culminated in recognising IRESSA as a poly-target binder. Complementary DFT evaluations 

and molecular dynamics trajectories were undertaken to corroborate the virtual findings computationally and to 

evaluate IRESSA's feasibility as a poly-target therapeutic prospect. IRESSA, chemically gefitinib, serves as an 

established agent for managing select malignancies, notably non-small cell lung carcinoma. As a member of the 

tyrosine kinase inhibitor family, it operates by intercepting oncogenic signals within malignant cells, thereby 

halting their multiplication. 

Materials and Methods  

To facilitate a clearer overview of the methodology, we have included a graphical abstract as Figure 1. The 

detailed procedures are described below:  
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Figure 1. The Graphical Abstract illustrates the entire workflow of the study, outlining the sequence of steps 

from data retrieval and preparation through to molecular dynamics simulations and the identification of 

IRESSA as a candidate against breast cancer. 

 

Protein and ligand preparations   

Key proteins implicated in breast cancer were selected, and their crystal structures in PDB format were retrieved 

from <http://rcsb.org/> using the identifiers 4KD7, 3RCD, 1M17, and 5NWH. These structures underwent 

preparation via the Protein Preparation Workflow (PPW) within Schrödinger’s Maestro suite [13-16, 29-31]. Pre-

docking protein refinement is essential to ensure reliable molecular recognition, involving structure correction, 

error resolution, and geometric optimisation. This enhances the fidelity of docking outcomes, providing a more 

realistic portrayal of binding pockets and improving the reliability of predictions in structure-guided drug 

discovery [32, 33]. The 4KD7 entry contains two identical subunits (chains A and B), along with four ligands, 

solvents, metals, and ions. The 3RCD structure includes six ligands, four protein chains (A, B, C, D), and solvent 

molecules. The 1M17 structure features chain A, one ligand, and solvents. Lastly, 5NWH comprises two chains 

(A and B), two ligands, and solvents. In the PPW preprocess stage, termini were capped, missing side chains were 

added, bond orders were assigned using CCD data, hydrogens were replaced, disulphide bonds were formed, and 

zero-order bonds were set for metals. Missing loops were modelled with Prime, and heteroatom states were 

generated at pH 7.4 (±2) [34-36]. In the optimisation stage, water orientations were sampled, crystal symmetry 

was accounted for, and hydrogen positions on modified residues were minimised. Protonation states were 

predicted using PROPKA for ionisable groups at the target pH, ensuring physiologically appropriate refinement 

[37]. In the minimisation stage, heavy atoms were converged to an RMSD of 0.30 Å, waters beyond 4 Å from 

ligands were removed, and minimisation was performed with the OPLS4 force field [38, 39]. Post-preparation, 

only chain A with its bound ligand was retained for 4KD7, 3RCD, and 1M17 (all other components discarded), 

whereas both chains A and B were kept for 5NWH [13-16]. The library of FDA-approved drugs was sourced from 

the NPC Tripod resource (<https://tripod.nih.gov/npc/>, accessed on 5 March 2023), exported, and subsequently 

imported into the Maestro workspace [30, 40]. Ligand preparation prior to docking is critical for accurate virtual 

screening, as it refines geometries, corrects structural flaws, and applies appropriate ionisation states. This step 

ensures robust predictions of binding modes, thereby increasing the precision and efficiency of docking-based 

drug discovery efforts. The ligand collection was processed using LigPrep, restricting molecular size to 500 atoms 

and employing the OPLS4 force field. Ionisation variants were generated at pH 7 ± 2, with desalting and tautomer 

production enabled [30, 36-39, 41]. Stereoisomer generation retained defined chiral centres while producing up 

to 32 variants per input ligand, with results exported to an SDF file [41]. Duplicates within the library were 

subsequently eliminated using Maestro’s duplicate remover tool, which identifies redundancy via canonical 

SMILES, retaining only unique structures [30]. 

 

Grid computation and multitargeted molecular docking   

The Receptor Grid Generation module was employed to construct grids around the target proteins, a fundamental 

procedure in docking investigations. This entails defining a three-dimensional grid encompassing the protein to 
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map prospective ligand-binding regions. The grid facilitates systematic sampling of ligand poses and orientations 

during docking, thereby improving the precision of predicted protein–ligand associations in drug development 

pipelines. Within the Receptor Grid tool, the option to select ligand molecules was activated, followed by 

designation of the native ligand to centre the active site on its workspace centroid. The docking box dimensions 

(‘dock ligand with length’) were then resized to fully enclose the reference ligand [42, 43]. Subsequently, the 

Virtual Screening Workflow (VSW) tool, a widely utilised platform for tiered compound evaluation, was applied 

to perform multistage screening [42, 43]. The prepared SDF ligand library served as input, with Lipinski’s rule 

enforced as a filter necessitating QikProp descriptor calculations [30, 44, 45]. Ligand preparation was bypassed 

since preprocessing had already been completed, and individual receptor grid files were manually assigned in the 

receptors panel. In the docking parameters, Epik state penalties were incorporated, and docking progressed 

through High Throughput Virtual Screening (HTVS), Standard Precision (SP), and Extra Precision (XP) protocols 

[36]. HTVS processed the full library, retaining only the top 10% for advancement to SP. Likewise, the leading 

10% from SP proceeded to XP. In the XP phase, up to four poses were generated per ligand, and all XP-docked 

complexes were submitted for MM/GBSA rescoring using molecular mechanics with generalised Born surface 

area solvation [34, 46-51]. This cascaded filtering strategy optimised resource allocation by concentrating 

intensive calculations on high-potential hits. Upon completion, results were exported to CSV format for 

downstream analysis to determine drug-target interaction frequencies. 

 

Molecular interaction fingerprints   

Molecular Interaction Fingerprints (IFPs) constitute a cheminformatics technique that encodes ligand–

environment contacts into a comparable binary or bit-string representation, capturing the presence of specific 

interaction types. The Interaction Fingerprints utility in Maestro was utilised to generate these profiles [30]. 

Receptor–ligand complexes were imported, all contact types were recorded, sequences were aligned to 

accommodate structural differences, and advanced options retained default values before fingerprint computation. 

In the resulting interaction matrix, contacts were visualised with colour coding in the primary plot, displaying 

only residues engaged in interactions. Additional panels depicted counts of ligand-centric and residue-centric 

interactions. 

 

Pharmacokinetic and DFT studies   

Pharmacokinetic evaluations investigate drug absorption, distribution, metabolism, and excretion profiles, 

elucidating bodily processing, bioavailability, metabolic pathways, and clearance rates. Such data inform dosing 

regimens to maximise safety and efficacy in clinical settings. Pharmacokinetic profiling of screened compounds 

was integrated via QikProp during virtual screening, with Lipinski’s rule applied as a key filter—an integral 

component of the workflow [30, 44, 45]. Computed descriptors were benchmarked against established reference 

ranges. Density Functional Theory (DFT) geometry optimisation and property calculations were conducted using 

the Jaguar module within Maestro, leveraging quantum mechanical principles to refine structures and probe 

electronic characteristics [30, 52]. In drug discovery contexts, Jaguar enhances molecular model fidelity, 

providing insights into energetics and reactivity that bolster subsequent predictive computations [30, 53]. Input 

comprised the ligand structures, employing the B3LYP-D3 functional with a 6–31 G** basis set by default. The 

DFT method was specified in the theory panel, with automatic SCF spin multiplicity. Three-body dispersion 

correction was activated alongside compatible dispersion functionals. SCF accuracy was set to quick mode, 

starting from an atomic overlap initial guess. Convergence thresholds included a maximum of 48 iterations, energy 

variation of 5 × 10−5 Hartree, and RMS density matrix change of 5 × 10−6 [30, 52]. SCF acceleration utilised a 

0 Hartree level shift, no thermal smearing, and the DIIS algorithm. Orbital consistency was enforced across 

isomers, using a single basis set without post-calculation localisation. Geometry optimisation allowed up to 100 

steps, transitioning to analytic integrals near convergence, with default convergence criteria and an initial Schlegel 

Hessian in redundant internal coordinates. In the properties section, vibrational frequencies were calculated from 

the available Hessian, incorporating IR intensities and predominant isotopes; thermochemical data were generated 

at 1.0 atm and 298.15 K. Molecular surfaces were computed for electrostatic potential, average local ionisation 

energy, non-covalent interactions, electron density, spin density, HOMO, and LUMO, applying the PBF solvation 

model with water as solvent. Results were archived for review via the QM-Monitor interface [30, 52]. 

 

Molecular dynamics simulation’s system preparation and production run   
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In this investigation, Desmond was utilised for molecular dynamics simulations to explore the interaction 

dynamics of IRESSA with breast cancer-associated proteins, yielding detailed information on protein–ligand 

contacts and revealing aspects of stability, flexibility, and intermolecular forces [33, 54]. This computational 

technique deepens our atomic-scale understanding of IRESSA’s performance, guiding advancements in drug 

development [55]. The System Builder and Molecular Dynamics modules in computational chemistry are 

employed to assemble starting configurations for simulations and to execute production trajectories that model 

atomic motions over time [30, 54, 55]. Combined, they facilitate examination of dynamic properties in intricate 

biomolecular assemblies. The System Builder tool was applied to generate the simulation systems, incorporating 

the pre-defined SPC water model within an orthorhombic box with 10 × 10 × 10 Å buffer distances from the 

protein–ligand (P–L) complexes, ensuring appropriate enclosure [56]. Ion and salt placement was restricted 

outside a 20 Å radius. System neutrality was achieved by adding 2Cl− to the IRESSA–4KD7 complex, 6Na+ to 

the IRESSA–3RCD complex, 5Na+ to the IRESSA–1M17 complex, and 10Na+ to the IRESSA–5NWH complex. 

Box volume was further optimised to snugly accommodate each P–L complex. The OPLS4 force field was 

selected [38, 39], resulting in system sizes of 23,913 atoms for IRESSA–4KD7, 35,222 atoms for IRESSA–3RCD, 

57,074 atoms for IRESSA–1M17, and 29,060 atoms for IRESSA–5NWH. The Molecular Dynamics panel was 

used to import the prepared systems, configuring a 100 ns simulation duration with trajectory recording every 100 

ps and an energy recording interval of 1.2 ps, producing 1000 frames per run [30, 54, 55]. Simulations employed 

the NPT ensemble at 300 K and 1.01325 bar. Systems underwent relaxation prior to production, and resulting 

trajectories were analysed via the Simulation Interaction Diagram tool [30, 57]. 

Results and Discussion 

Protein–ligand molecular interaction analysis   

Computational docking of proteins and ligands predicts the binding configuration of a small-molecule candidate 

(ligand) to its macromolecular target through simulation. Its chief aim is to decipher affiliation patterns, thereby 

supporting the optimised creation of efficacious medicines. This method functions as an in silico iterative 

refinement, assessing diverse chemical entities' accommodation within protein cavities to pinpoint viable 

therapeutic contenders. Binding of the IRESSA molecule to Dihydrofolate reductase (PDB ID: 4KD7) achieved 

a docking score of −8.809 kcal/mol alongside an MM/GBSA value of −59.08 kcal/mol, facilitated through a 

hydrogen bond involving the ALA9 residue and the ligand's NH moiety (Table 1, Figures 2Aa and 2Ab). The 

HER2 Kinase assembly (PDB ID: 3RCD) bound to IRESSA registered a docking score of −8.459 kcal/mol and 

MM/GBSA of −60.59 kcal/mol, incorporating a hydrogen bond from MET801 to a nitrogen atom plus a halogen 

interaction from ASP863 to the ligand's chlorine atom (Table 1, Figures 2Ba and 2Bb). Association of IRESSA 

with the epidermal growth factor receptor (PDB ID: 1M17) delivered a docking score of −9.021 kcal/mol and 

MM/GBSA of −61.74 kcal/mol, encompassing dual hydrogen bonds to MET769 (nitrogen) and ASP831 

(protonated nitrogen), a salt bridge to ASP831 (protonated nitrogen), and a halogen contact to LEU764 (ligand 

chlorine) (Table 1, Figures 2Ca and 2Cb). Engagement of NUDT5 (PDB ID: 5NWH) with IRESSA gave a 

docking score of −4.527 kcal/mol and MM/GBSA of −49.09 kcal/mol, featuring dual hydrogen bonds to TYR90 

(nitrogen) and PHE167 (ligand NH), complemented by dual pi–pi stacking from TYR90 to the ligand's aromatic 

rings (Table 1, Figures 2Da and 2Db). 

 

    

a b a b 

A) B) 
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C) D) 

 
Figure 2. Illustrating interaction schematics between the proteins and IRESSA ligand, demonstrating site 

coverage alongside comprehensive perspectives: (Aa) 4KD7 three-dimensional, (Ab) 4KD7 two-dimensional, 

(Ba) 3RCD three-dimensional, (Bb) 3RCD two-dimensional, (Ca) 1M17 three-dimensional, (Cb) 1M17 two-

dimensional, (Da) 5NWH three-dimensional, and (Db) 5NWH two-dimensional. An accompanying key 

explains residue categories and bond varieties. 

 

Table 1. Displaying docking energies (kcal/mol), MM/GBSA energies (kcal/mol), and supplementary metrics 

for the interactions of all four targets with IRESSA. 

S 

No 
PDB ID 

Docking 

Score 
MMGBSA 

Prime 

Hbond 

Prime 

vdW 

Ligand 

Efficiency ln 

Ligand 

Efficiency sa 

1 4KD7 −8.809 −59.08 −91.21 −897.44 −1.987 −0.893 

2 3RCD −8.459 −60.59 −152.23 −1316.69 −1.908 −0.857 

3 1M17 −9.021 −61.74 −151.3 −1374.68 −2.035 −0.914 

4 5NWH −4.527 −49.09 −97.75 −703.04 −1.021 −0.459 

 

Molecular Interaction Fingerprints   

Molecular interaction fingerprinting represents a technique designed to examine the detailed contacts between a 

ligand and a target protein, generating a distinctive profile that highlights specific binding features. The IRESSA 

complexes formed with 4KD7, 3RCD, 1M17, and 5NWH exhibited numerous contacts contributing to their 

stability. The maximum (identical) number of interactions occurred in 4KD7 and 3RCD, followed by 1M17 in 

second place and 5NWH in third, based on the total count of ligand contacts (Figure 3), (right side). The frequency 

of residue engagements with IRESSA is displayed on the upper portion of Figure 3, revealing the most frequently 

involved residues with the following occurrence counts: LEU (8), VAL (6), LYS (6), ASN (6), ILE (5), GLU (5), 

ARG (4), PRO (3), ASP (3), PHE (2), GLY (2), ALA (2), TYR (1), THR (1), SER (1), and GLN (1). Hydrophobic 

residues reduce solvent exposure to enhance complex stability, with Leucine (LEU) participating in eight 

interactions. Valine (VAL) and Isoleucine (ILE) also contribute notably, registering six and five contacts, 

respectively. Polar residues, capable of hydrogen bonding, bolster binding strength through Lysine (LYS) and 

Asparagine (ASN), each with six engagements, whereas Threonine (THR) and Serine (SER) each provide one. 

Charged residues drive electrostatic contributions essential for salt bridges and ionic contacts, prominently 

featuring Arginine (ARG) with four interactions and Aspartic acid (ASP) with three, the latter supporting both 

hydrogen bonds and salt bridges. Aromatic residues facilitate pi–pi stacking via Phenylalanine (PHE) and 

Tyrosine (TYR), each involved in two interactions with IRESSA’s benzene rings. Compact residues like Alanine 

(ALA) and Glycine (GLY) deliver modest but significant roles, each with two contacts, aiding binding site 

adaptability. Proline (PRO) participates in three interactions, potentially shaping local pocket geometry and 

promoting overall complex integrity. Glutamic Acid (GLU) stands out with five interactions, leveraging its side 

chain for hydrogen bonds and salt bridges, demonstrating its multifunctional binding capacity. This in-depth 

evaluation deepens insight into the mechanistic foundation of IRESSA’s polypharmacological profile, reinforcing 

its potential as a therapeutic option for breast cancer. 
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Figure 3. Illustrating the Molecular Interaction Fingerprinting of IRESSA across the four proteins. The 

coloured diagram depicts distributions of interacting residues, with the right-side panel indicating ligand 

interaction counts and the upper panel showing residue interaction frequencies, facilitating identification of 

dominant residue–ligand pairings. 

 

DFT and pharmacokinetic studies   

In this thorough examination of IRESSA as a potential therapeutic agent, we applied the TDDFT(b3lyp-d3)/SOLV 

approach using a 6–31 g** basis set, yielding an extensive array of molecular descriptors that illuminate key 

physicochemical attributes. The total count of canonical orbitals, fundamental to electronic configuration analysis, 

stood at 587. Geometry optimisation achieved a convergence level classified as four, reflecting high structural 

refinement accuracy. Energy assessments revealed a gas-phase ground state energy of −1857.538131 and a 

marginally stabilised solution-phase value of −1857.5665. The computed solvation energy, indicative of 

environmental adaptability, amounted to −17.801717 kcal/mol. Electronic properties were extensively 

characterised, particularly through HOMO and LUMO energies, which inform reactivity and stability, alongside 

data on the lowest singlet excitation and corresponding oscillator strength. 

To explore IRESSA’s spectroscopic behaviour, three-dimensional dipole moment components (X, Y, and Z) were 

evaluated, shedding light on molecular polarity. Electrostatic potential (ESP) metrics—including minimum, 

maximum, average values, and variance—were carefully assessed to elucidate intermolecular interaction 

tendencies. Likewise, Average Local Ionisation Energy (ALIE) descriptors, covering minimum, maximum, mean, 

and balance parameters, together with the Average Absolute Deviation from the Mean ALIE, offered valuable 

perspectives on regional reactivity and ionisation uniformity. Graphical depictions in Figure 4 illustrated various 

energy landscapes, enhancing comprehension of IRESSA’s structural and energetic features. Figure 5 presented 

core molecular visualisations, encompassing electron density, electrostatic potential, HOMO, and LUMO 

distributions, providing essential guidance for subsequent optimisation in drug development. 
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Figure 4. Illustrating the various energy levels obtained following multiple optimisation iterations across 

time, alongside comparisons to the relative energy states of the compounds. The Grad Max is depicted in 

blue, Disp Max in green, Grad RMS in orange, and Disp RMS in red. Unsigned dE appears in magenta, 

whereas the relative energy (in Hartree units) is represented in black. 

 

  
electron density HOMO 

  

electrostatic potential LUMO 

Figure 5. Depicting the distinct energy profiles of the IRESSA compound. Representations include electron 

density, electrostatic potential, as well as the HOMO and LUMO regions, to elucidate the molecule’s energy 

distribution at both lower and higher orbitals. 

 

Assessment of IRESSA via QikProp involved examining multiple descriptors and derived parameters against 

established benchmark values, yielding key information on its drug-like attributes. IRESSA displayed zero acidic 

or amidine functionalities, complying with the recommended limit of 0–1 for each. It possessed one amine group, 

also within the permitted 0–1 range. The molecule incorporated 22 out of 56 atoms, reflecting appropriate 

structural complexity. Predictions for metabolic sites numbered five, situated comfortably in the 1–8 acceptable 

window. The count of nitrogen and oxygen atoms reached 7, consistent with the standard interval of 2–15 (Table 



Berger et al., Comprehensive Structure-Based In Silico Identification of IRESSA as a Multitarget Inhibitor of Key Breast 

Cancer Signaling Proteins 

 

 

220 

2). For lipophilicity and permeability, the QPlogPw registered 10.783, inside the 4.0–45.0 bounds. The polar 

surface area (PSA) measured 61.141, well within the 7.0–200.0 guideline, signalling advantageous polarity. 

Human oral absorption proved outstanding, achieving a PercentHumanOralAbsorption of 100%, exceeding the 

high-absorption benchmark of >80%. On safety aspects, QikProp highlighted a potential issue with QPlogHERG 

at −7.087, falling below the −5 concern threshold (Table 2). The QPlogKhsa of 0.349 remained within the −1.5 

to 1.5 range, indicating suitable human serum albumin binding. IRESSA conformed to both Lipinski’s Rule of 

Five and Rule of Three, presenting a QPlogBB of 0.312 and QPlogPo/w of 4.31. Additional physicochemical 

metrics—including SAfluorine, SASA, volume, and WPSA—aligned with recommended limits, supporting 

strong drug-like potential (Table 2). Overall, the QikProp analysis revealed that IRESSA exhibits favourable 

pharmacokinetic characteristics in line with conventional drug development criteria, reinforcing its candidacy as 

a viable and potentially safe therapeutic agent. 

 

Table 2. Presenting the ADMET profile of the IRESSA compound alongside comparisons to QikProp reference 

standards. 

Descriptor 
Iressa 

Value 

Standard/Acceptable 

Range 
Descriptor 

Iressa 

Value 

Standard/Acceptable 

Range 

Number of 

carboxylic acids 
0 0–1 

Human Oral 

Absorption 
3 - 

Number of amides 0 0–1 
Ionization 

Potential (eV) 
8.475 7.9–10.5 

Number of 

amidines 
0 0 

Apparent MDCK 

permeability 
0.007 - 

Number of amines 1 0–1 Molecular Weight 446.908 130.0–725.0 

Atoms in 3- or 4-

membered rings 
0 - 

Percent Human 

Oral Absorption 
100 >80% high, <25% poor 

Atoms in 5- or 6-

membered rings 
22 - 

Pi (hydrophobic) 

Surface Area 
242.502 0.0–450.0 

Predicted 

metabolic 

reactions 

5 1–8 Polar Surface Area 61.141 7.0–200.0 

Number of 

nitrogen and 

oxygen atoms 

7 2–15 

Brain/Blood 

Partition 

Coefficient 

0.312 −3.0–1.2 

Number of non-

conjugated bonds 
4 - 

hERG K+ channel 

blockage 

(logIC50) 

−7.087 concern below −5 

Number of non-

hydrogen atoms 
31 - 

Human serum 

albumin binding 
0.349 −1.5–1.5 

Number of atoms 

in aromatic rings 
22 - 

Skin permeability 

(log Kp) 
−2.682 −8.0–−1.0 

Number of 

rotatable bonds 
8 0–15 

Hexadecane/gas 

partition coeff. 
13.202 4.0–18.0 

Reactive 

functional groups 
0 0–2 

Octanol/Water 

partition coeff. 
4.31 −2.0–6.5 

Drug-likeness 

penalty stars 
0 0–5 

Octanol/gas 

partition coeff. 
20.444 8.0–35.0 

Hydrogen bond 

acceptors 

(estimated) 

7.7 2.0–20.0 
Water/gas 

partition coeff. 
10.783 4.0–45.0 

(ACxDN^0.5)/SA 

index 
0.0101519 0.0–0.05 

Predicted aqueous 

solubility (log S) 
−5.129 −6.5–0.5 

Category small - 
Caco-2 cell 

permeability 
1049.999 

<25 poor, >500 

excellent 

Conformation-

independent 

QPlogS 

−5.22 −6.5–0.5 
MDCK cell 

permeability 
2306.642 

<25 poor, >500 

excellent 
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CNS activity 

(predicted) 
1 

−2 (inactive), +2 

(active) 
Polarizability 44.448 13.0–70.0 

(Dipole 

moment)^2 / 

Volume 

0.0220798 0.0–0.13 
Rule of Five 

violations 
0 maximum 4 

Dipole moment 5.429 1.0–12.5 
Rule of Three 

violations 
0 maximum 3 

Hydrogen bond 

donors 
1 0.0–6.0 

Amide oxygen 

surface area 
0 0.0–35.0 

Electron affinity 

(eV) 
1.279 −0.9–1.7 

Fluorine surface 

area 
41.345 0.0–100.0 

Hydrophilic 

surface area 
39.187 7.0–330.0 

Total solvent-

accessible surface 

area 

758.477 300.0–1000.0 

Hydrophobic 

surface area 
366.922 0.0–750.0 Molecular volume 1334.913 500.0–2000.0 

Globularity 0.7730209 0.75–0.95 
Weakly polar 

surface area 
109.866 0.0–175.0 

 

Molecular dynamics simulations   

Molecular dynamics (MD) simulations track the time-dependent motion of molecular systems by numerically 

integrating Newton’s equations of motion, enabling analysis of atomic trajectories and interactions that reveal 

dynamic properties, including positional deviations, flexibility fluctuations, and intermolecular forces. Root-

mean-square deviation (RMSD) quantifies the mean displacement of atoms relative to a starting or reference 

conformation, serving as an indicator of overall structural integrity. In contrast, root-mean-square fluctuation 

(RMSF) evaluates the mobility of specific residues or atoms across the simulation timeframe. Intermolecular 

interactions encompass contributions from van der Waals contacts, hydrogen bonds, and electrostatic forces, 

collectively governing the system’s stability and conformational behaviour throughout the MD trajectory. 

 

Root mean square deviation   

Root Mean Square Deviation (RMSD) is a fundamental tool in computational structural biology for gauging the 

typical shift in atomic positions away from a reference frame during molecular dynamics runs or when 

superimposing structures. It offers a numerical summary of overall conformational differences between coordinate 

sets, commonly used to benchmark simulated models against experimental ones. Smaller RMSD figures reflect 

closer structural alignment and greater persistence of the initial fold. Computation requires optimal superposition 

of the two structures followed by taking the square root of the averaged squared distances between corresponding 

atoms, yielding an objective measure of either predictive accuracy or temporal robustness in simulations. In the 

IRESSA-bound Dihydrofolate reductase (PDB ID: 4KD7), the protein started with a deviation of 0.77 Å, the 

ligand reached 0.42 Å by 0.10 ns, and by the end of 100 ns the values stood at 2.19 Å for the protein and 2.52 Å 

for the ligand—entirely within tolerable limits for biomolecular systems and effectively under 2 Å on average 

(Figure 6a). For the HER2 Kinase–IRESSA assembly (PDB ID: 3RCD), early protein deviation was 1.17 Å with 

the ligand at 1.77 Å after 0.10 ns; by 100 ns these rose to 2.73 Å (protein) and 1.99 Å (ligand), demonstrating 

consistently reliable stability throughout (Figure 6b). The epidermal growth factor receptor complexed with 

IRESSA (PDB ID: 1M17) opened with 2.01 Å protein deviation and 1.43 Å for the ligand at 0.10 ns; the 

subsequent trajectory proved steady, concluding at 5.49 Å (protein) and 3.02 Å (ligand) after 100 ns, with 

deviations falling into acceptable ranges once the initial 1 ns equilibration period is excluded (Figure 6c). The 

NUDT5–IRESSA pairing (PDB ID: 5NWH) began at 1.83 Å for the protein and moved to 2.05 Å for the ligand 

by 0.10 ns, eventually reaching 6.87 Å (protein) and 19 Å (ligand) at 100 ns—a notably larger excursion (Figure 

6d). These trajectory details deepen our appreciation of how IRESSA maintains binding integrity across diverse 

breast cancer targets. Plots distinguish Cα traces in blue, full backbone in green, and ligand in red. 
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a) b) 

  
c) d) 

Figure 6. Displaying Root Mean Square Deviation (RMSD) profiles for IRESSA (red) against Cα (blue) and 

backbone (army green) atoms in the protein complexes (a) 4KD7, (b) 3RCD, (c) 1M17, and (d) 5NWH across 

the 100 ns molecular dynamics simulation. 

 

Root mean square fluctuations   

Root Mean Square Fluctuation (RMSF) quantifies the mobility of specific atoms or residues in a biomolecule over 

the course of a molecular dynamics simulation by measuring their variance from the time-averaged position. It 

highlights regions of high flexibility versus rigidity within the structure. The 4KD7–IRESSA system revealed 

several residues exceeding 2 Å fluctuation: VAL1, GLY2, ASN19, PRO103, GLU104, GLU154, GLY164, 

SER167, and ASP186. A substantial number of residues formed stabilising contacts with IRESSA, namely ILE7, 

VAL8, ALA9, ILE16, ASN19, GLY20, LEU22, GLU30, PHE31, TYR33, PHE34, GLN35, MET52, LYS55, 

THR56, SER59, ILE60, PRO61, LYS63, ASN64, PRO66, LEU67, ARG70, VAL115, SER118, TYR121, and 

THR146 (Figure 7a). In the 3RCD–IRESSA complex, residues showing >2 Å mobility included ALA710, 

ASN745, SER792, GLU876-LYS883, GLN990-PRO999, ASP1011, ASP1013, and VAL1018-GLU1022; 

residues contributing to complex integrity through ligand contacts were LEU726, SER728, ALA730, PHE731, 

VAL734, ALA751, LYS753, SER783, LEU785, THR798, LEU800, MET801, CYS805, LEU807, ASP808, 

ARG811, ASP845, ARG849, ASN850, LEU852, THR862, ASP863, GLY881, PHE1004, and LEU1008 (Figure 

7b). For the 1M17–IRESSA assembly, highly mobile segments (>2 Å) encompassed GLY672-ALA678, 

GLY711-LYS713, GLU725-LYS730, SER760, HIS781-GLY786, ALA840, GLU841, ALA847-GLY850, 

HIS864, ARG865, GLY893, PRO895, SER897, GLU898, SER901, GLU904, LYS905, PRO913, ILE914, 

ARG949, ASP950, GLN952, ARG953, and VAL956-PRO995; stabilising interactions originated from LYS692, 

LEU694, SER696, PHE699, VAL702, ALA719, LYS721, CYS751, THR766, LEU768, MET769, CYS773, 

ASP776, ARG779, GLU780, ARG817, LEU820, THR830, and ASP831 (Figure 7c). The 5NWH–IRESSA 

complex featured elevated mobility (>2 Å) in LYS14-THR58, THR71, LEU72, ARG84-GLY89, ASP133-

ASN138, ALA153, GLU154, ALA156, ARG157, PRO162-PHE167, ASP183, ALA184, VAL186-HIS190, and 

LEU202-ASN208; residues anchoring the ligand included GLU25, GLY26, LYS27, TRP28, VAL29, LYS33, 

LYS42, THR45, TRP46, GLU47, LYS81, GLN82, PHE83, ARG84, PRO85, PRO86, MET87, GLY88, TYR90, 

LYS161, PRO162, ASP164, GLU166, PHE167, VAL168, GLU169, GLU188, GLU189, HIS190, and THR192 

(Figure 7d). 

 



Berger et al., Comprehensive Structure-Based In Silico Identification of IRESSA as a Multitarget Inhibitor of Key Breast 

Cancer Signaling Proteins 

 

 

223 

  
a) b) 

  
c) d) 

Figure 7. Presenting Root Mean Square Fluctuation (RMSF) values for Cα (blue) and backbone (army green) 

atoms across the proteins (a) 4KD7, (b) 3RCD, (c) 1M17, and (d) 5NWH. Green vertical lines mark residues 

engaged in ligand contacts during the 100 ns molecular dynamics run. 

 

Simulation interaction diagrams   

Intermolecular forces dictate the associations between distinct molecules, profoundly affecting their 

characteristics and behaviour. Van der Waals attractions arise from transient dipoles, encompassing dispersion 

forces and permanent dipole interactions. Hydrogen bonds represent a stronger subset of dipole interactions, 

occurring when hydrogen atoms link to highly electronegative elements. Ionic bonds stem from electrostatic pull 

between oppositely charged species, whereas hydrophobic effects drive non-polar groups to aggregate away from 

aqueous surroundings. Grasping these forces is essential across chemistry, biology, and materials disciplines, as 

they illuminate molecular-level phenomena and material attributes. In the IRESSA-bound Dihydrofolate 

reductase (PDB ID: 4KD7), numerous hydrogen bonds formed involving GLY20 and SER59 with water and a 

ligand NH group, ASN64, GLY20, and ILE16 with water, ALA9 with three ligand nitrogen atoms, and GLU30 

plus ASN64 with water bridging three oxygen atoms; additionally, pi–pi stacking occurred between TYR121 and 

a benzene ring of IRESSA (Figure 8a). The HER2 Kinase–IRESSA complex (PDB ID: 3RCD) featured multiple 

hydrogen bonds, including ASP863 with water and a ligand NH, THR798, THR862, ASP808, and ARG849 with 

water, MET801 with three ligand nitrogens, and CYS805, LEU726, SER728, plus ASP808 with water across 

three oxygens; a pi-cation interaction also linked LYS753 to a ligand benzene ring (Figure 8b). For the epidermal 

growth factor receptor paired with IRESSA (PDB ID: 1M17), eight water molecules acted as bridges enhancing 

stability, alongside hydrogen bonds from ASP776 to a protonated ligand nitrogen, ASP831 via water to a ligand 

NH, MET768, THR830, and THR766 with water mediating two ligand nitrogens, and ASP776 plus CYS773 with 

two ligand oxygens; a salt bridge further connected ASP776 to the ligand’s protonated nitrogen (Figure 8c). The 

NUDT5–IRESSA assembly (PDB ID: 5NWH) displayed hydrogen bonds involving GLY88 with a ligand NH 

and VAL168, TYR90, plus GLU169 with water bridging two ligand nitrogens, complemented by seven pi–pi 

stacking contacts from TYR90, PHE83, HIS190, and PHE167 to three benzene rings of IRESSA (Figure 8d). 

Ligand-contacting residues are highlighted in green for clarity on binding sites, with backbone traces compared 

to Cα fluctuations for deeper insight. Interaction frequencies are summarised in Figure 9, presented as histograms 

categorising H-bonds, hydrophobic contacts, ionic bonds, and water bridges. 
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a) b) 

  
c) d) 

 
Figure 8. Depicting the simulation interaction profiles for IRESSA within complexes of (a) 4KD7, (b) 

3RCD, (c) 1M17, and (d) 5NWH. A legend accompanies the diagrams to clarify interaction categories and 

bond classifications. 

 

  

a) b) 

  

c) d) 

Figure 9. Quantifying interactions from the simulation diagrams of IRESSA across complexes with (a) 

4KD7, (b) 3RCD, (c) 1M17, and (d) 5NWH, with H-bonds in green, ionic in red, hydrophobic in grey, and 

water bridges in blue. 
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The findings from our in-depth investigation position IRESSA as a strong candidate for multitargeted therapy in 

breast cancer. Our work commenced with protein–ligand docking simulations to elucidate the detailed binding 

modes of IRESSA with critical breast cancer-related proteins: Dihydrofolate reductase (PDB ID: 4KD7), HER2 

Kinase (PDB ID: 3RCD), epidermal growth factor receptor (PDB ID: 1M17), and NUDT5 (PDB ID: 5NWH). 

Docking scores and MM/GBSA energies proved essential for evaluating binding strength and complex durability. 

IRESSA exhibited potent engagements through hydrogen bonds, halogen bonds, and salt bridges, resulting in 

robust complexes with these targets. These binding patterns are visually captured in Figure 2, highlighting key 

participating residues and confirming overall complex integrity. Additional understanding of interaction profiles 

emerged from molecular interaction fingerprinting, which mapped ligand contact distributions and identified the 

most frequently engaged residues. Diverse amino acid classes coordinate a network of stabilising contributions 

that dictate IRESSA’s attachment to pivotal breast cancer proteins (Figure 3). Leading the hydrophobic 

contributions, Leucine (LEU) registered eight contacts, supported by Valine (VAL) with six and Isoleucine (ILE) 

with five, together creating a non-polar core that shields the complex from solvent and bolsters stability. Polar 

amino acids, notably Lysine (LYS) and Asparagine (ASN), each with six engagements, are central to hydrogen 

bond formation, thereby strengthening affinity. Charged groups, headed by Arginine (ARG) at four interactions 

and Aspartic Acid (ASP) at three, harness electrostatic forces to generate salt bridges and ionic contacts, 

introducing further sophistication. Aromatic side chains from Phenylalanine (PHE) and Tyrosine (TYR), each 

contributing two contacts, facilitate pi–pi stacking against IRESSA’s aromatic rings. Compact residues such as 

Alanine (ALA) and Glycine (GLY), both with two interactions, modestly enhance pocket flexibility and 

accommodation. Proline (PRO), owing to its conformational constraints, engages in three contacts that may shape 

local geometry. Glutamic Acid (GLU), with five interactions, demonstrates broad utility by mediating both 

hydrogen bonds and salt bridges. This elaborate orchestration of residue contributions deepens insight into 

IRESSA’s binding rationale and underscores its promise as a polypharmacological agent against breast cancer. 

The thorough examination presented in Figure 4 illuminates IRESSA’s consistent performance across varied 

targets. Quantum chemical calculations, conducted via the TDDFT(b3lyp-d3)/SOLV approach with a 6–31 g** 

basis set, probed the molecule’s electronic framework and energetic profile. A wide array of descriptors—from 

canonical orbital count to solvation energy—delivered a detailed portrait of its properties. Figure 4 consolidates 

these outcomes, revealing the nuanced molecular characteristics of IRESSA. Drug-likeness assessment was 

advanced through QikProp evaluation, encompassing numerous descriptors benchmarked against reference 

standards. Critical attributes related to lipophilicity, permeability, and toxicity flags were inspected. Overall, 

IRESSA displayed favourable pharmacokinetic traits conforming to conventional drug development criteria. 

These data, summarised in Table 2, affirm its viability as a potent and tolerable therapeutic prospect. 

Our investigation extended into molecular dynamics (MD) simulations, which capture the time-evolving 

behaviour of molecules and yield detailed perspectives on IRESSA’s conformational stability and flexibility. 

Analyses of Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) delivered 

numerical evaluations of structural shifts and regional mobility, respectively. As shown in Figures 6 and 7, the 

trajectories revealed stable IRESSA complexes characterised by tolerable deviations and confined fluctuations. 

The Simulation Interaction Diagrams presented in Figure 8 deepened this insight by dissecting the operative 

intermolecular contacts. Specific details on hydrogen bonds, pi–pi stacking, and water-mediated bridges furnished 

a fine-grained view of the factors sustaining complex integrity. A quantitative summary of interaction frequencies 

appeared in Figure 9, highlighting the dominance of hydrogen bonds, hydrophobic contacts, ionic bonds, and 

water bridges. 

Alignment with current advances in breast cancer drug discovery reinforces that IRESSA embodies modern 

polypharmacology principles. Its diverse engagements with breast cancer-associated proteins, combined with 

advantageous physicochemical attributes, establish it as an attractive multitargeted therapeutic prospect. The 

orchestrated interplay of molecular forces uncovered here adds refined contributions to the progressing field of 

breast cancer treatment strategies. 

In summary, IRESSA stands out from this work as a versatile and encouraging candidate for breast cancer 

management. Integration of computational docking, quantum mechanical calculations, and molecular dynamics 

simulations yields a comprehensive molecular-level portrait of its performance [58-60]. These outcomes not only 

expand understanding of IRESSA but also enrich the wider conversation on drug design and development, 

particularly for breast cancer where precise and potent interventions remain critically needed. IRESSA, originally 

designed as an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for lung cancer, has attracted 
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interest for possible applications in breast cancer [58-60]. Overactivation of EGFR can drive tumour cell 

proliferation, and evidence indicates potential activity of IRESSA against certain breast cancer subtypes with 

elevated EGFR expression. Nevertheless, its utility in breast cancer is far less consolidated than in lung cancer, 

where it benefits from broader clinical validation and routine application [58-60]. As with all oncological agents, 

any consideration of IRESSA for breast cancer must involve thorough discussion with oncology specialists, 

accounting for tumour characteristics, patient health status, and alternative therapies. Remaining current with 

emerging research and seeking tailored guidance from healthcare providers is essential. 

This investigation delivers an extensive appraisal of IRESSA as a prospective multitargeted agent against breast 

cancer, leveraging an integrated suite of computational modelling, quantum chemistry, and molecular dynamics 

approaches. The granular revelations concerning protein–ligand binding, molecular descriptors, and complex 

durability supply meaningful data supporting its therapeutic promise. To propel IRESSA’s evaluation forward, 

progression from virtual screening to preclinical in vivo experiments and subsequent clinical trials is vital for 

realistic appraisal of efficacy and tolerability. Investigating synergistic regimens, elucidating resistance pathways, 

and pinpointing predictive biomarkers for patient selection represent key avenues for refinement. Moreover, 

prolonging molecular dynamics trajectories to support pharmacological profiling could bolster the robustness and 

translational relevance of the results. Incorporation of patient-derived xenografts or organoids, alongside vigilant 

tracking of advancing literature in breast cancer therapeutics and drug innovation, will be instrumental in 

sharpening IRESSA’s position within personalised treatment paradigms. Ultimately, the present work establishes 

a solid platform for viewing IRESSA as a polyvalent candidate, while the proposed next steps seek to translate in 

silico forecasts into clinical realities, advancing the pipeline of targeted breast cancer interventions. 

Conclusion 

Breast cancer continues to pose a major worldwide health burden, affecting millions of women across the globe. 

This work underscores the intricate issue of drug resistance in breast cancer management, highlighting the urgency 

for novel therapeutic approaches. Through multitargeted virtual screening, IRESSA emerged as an encouraging 

inhibitor of key oncogenic proteins. Analyses involving interaction fingerprints, DFT calculations, ADMET 

profiling, and molecular dynamics simulations confirmed its binding stability, indicating prospective therapeutic 

potential. Although IRESSA holds FDA approval for lung cancer, its polypharmacological profile supports 

exploration of repurposing for breast cancer applications. Empirical validation remains essential to establish its 

efficacy, yet these computational insights provide an optimistic pathway for subsequent investigations aimed at 

overcoming resistance mechanisms in breast cancer. 
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