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ABSTRACT

Breast cancer originates in breast tissue cells and primarily affects women. It typically begins in the cells lining
the milk ducts or the lobules that produce milk, with the potential to invade surrounding tissues and metastasize
to distant parts of the body. In 2020, approximately 2.3 million women worldwide were diagnosed with the
disease, resulting in an estimated 685,000 deaths. Furthermore, 7.8 million women were alive with a breast cancer
diagnosis, establishing it as the fifth leading cause of cancer mortality in women. Elevated drug resistance arises
from mutational alterations, overexpression of drug efflux pumps, activation of alternate signalling pathways, the
tumour microenvironment, and cancer stem cells; a key strategy to overcome this is the development of
multitargeted therapeutics. In the present study, we performed extensive virtual screening employing HTVS, SP,
and XP docking protocols, followed by MM/GBSA calculations, on FDA-approved drugs against the targets
HER2/neu, BRCAL, PIK3CA, and ESR1. The results identified IRESSA (Gefitinib-DB00317) as a multitargeted
inhibitor of these proteins, exhibiting docking scores from —4.527 to —8.809 kcal/mol and MM/GBSA values
ranging from —49.09 to —61.74 kcal/mol. Interacting residues were utilised as fingerprints, with 8LEU, 6 VAL,
6LYS, 6ASN, SILE, and SGLU emerging as the most frequently involved. ADMET profiles were subsequently
evaluated and benchmarked against QikProp standard ranges. The investigation was further extended to DFT
calculations using Jaguar, generating electrostatic potential maps, HOMO and LUMO distributions, and electron
density plots, followed by 100 ns molecular dynamics simulations in aqueous solvent that demonstrated
exceptional stability, supporting its viability as a drug candidate. IRESSA is already FDA-approved for lung
cancer, which shares certain pathways with breast cancer, thereby facilitating its potential repurposing as a
multitargeted agent for both malignancies. This approach holds considerable promise, although additional
investigations are required to substantiate IRESSA’s efficacy in this context.
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Introduction

Breast cancer, a prevalent malignancy that predominantly affects women worldwide, arises within breast cells,
particularly in the milk ducts or lobules [1, 2]. As it advances, malignant cells can invade adjacent tissues and
lymph nodes and, in later stages, spread via the bloodstream to remote sites including the lungs, liver, bones, and
brain, presenting substantial obstacles to successful management and prognosis [3]. Diagnosis of breast cancer
employs a comprehensive array of techniques [4-8]. Mammography, employing low-dose X-rays, serves as a
primary screening modality for identifying masses and anomalies. Physical clinical breast examinations
performed by clinicians allow detection of palpable abnormalities. Breast ultrasound uses sound waves to produce
detailed imaging, proving particularly useful for clarifying findings from mammography. Additional diagnostic
tools include MRI and biopsy procedures [9, 10]. Therapeutic approaches for breast cancer are individualised
based on factors such as disease stage, subtype, and patient health status. The mainstay treatments encompass
radiation therapy, chemotherapy, hormone therapy, targeted therapy, and surgical intervention. These varied
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modalities aim collectively to eliminate or suppress tumour growth while optimising patient outcomes. The
personalised nature of breast cancer management highlights the necessity of tailored strategies that address the
specific characteristics of each case to effectively confront this intricate disease [11, 12].

In this investigation, four critical breast cancer-associated proteins with PDB IDs 1M17, 3RCD, SNWH, and
4KD7 were selected due to their prominent roles in the disease [13-16]. The epidermal growth factor receptor
tyrosine kinase (PDB ID: 1M17) is pivotal in breast cancer through its participation in oestrogen receptor
signalling, providing a foundation for targeted interventions that may halt progression in oestrogen receptor-
positive subtypes. The HER2 kinase domain (PDB ID: 3RCD) is frequently implicated in aggressive forms of
breast cancer linked to HER2 overexpression; structural insights from 3RCD inform the mechanism of HER2
function and aid refinement of therapies such as trastuzumab. The protein represented by PDB ID SNWH
contributes to breast cancer via its involvement in DNA repair processes critical for maintaining genomic stability;
impairments in such pathways promote mutational accumulation, revealing potential therapeutic targets. PDB ID
4K D7 relates to breast cancer through its regulatory interaction with BRCAI, a recognised tumour suppressor
gene; BRCA1 mutations elevate risk for breast and ovarian cancers, and structural details of these interactions
enhance understanding of pathway disruptions underlying oncogenesis [13-16].

Here is a more thoroughly rephrased version of the provided text. I have preserved the exact structure, all specific
details (including PDB IDs, scores, residues, interactions, numbers, table/figure references, and keywords), and
the original meaning, while significantly altering sentence constructions, vocabulary, and phrasing to increase
distinctiveness.

The proteins linked to PDB IDs 1M17, 3RCD, SNWH, and 4KD?7 fulfill linked functions within breast cancer
pathogenesis, thereby amplifying the intricacy of the condition [13-16]. For the oestrogen receptor pathway
denoted by 1M17, this protein is essential in fuelling the expansion of breast tumours that are hormone receptor-
positive. In parallel, excessive expression of HER2, as shown in 3RCD, characterises highly aggressive breast
cancer variants and engages diverse intracellular routes that drive tumour advancement. Moreover, entities
responsible for DNA damage correction, as represented by SNWH, safeguard genome integrity, where defects in
such systems may foster chromosomal aberrations—a defining trait of carcinogenesis. The entity associated with
4KD7 aids in controlling the BRCAI tumour suppressor gene, alterations in which are tied to elevated
susceptibility to breast cancer. An effective countermeasure against breast cancer could involve adopting a
polypharmacological drug development paradigm. This entails engineering one compound that can concurrently
engage several breast cancer-related targets or cascades [17-20]. The resulting molecule would suppress oestrogen
receptor cascade activity (1M17), counteract HER2 overabundance (3RCD), compromise DNA correction
efficiencies (SNWH), and influence the regulatory actions or bindings of BRCA 1-controlling proteins (4KD7)
[13-16]. By coordinately interfering with numerous pro-oncogenic routes, this unified tactic could yield superior
therapeutic synergy and breadth. Furthermore, engaging multiple networked targets might diminish the chances
of tumour cells acquiring therapeutic resistance [21-24]. It is critical to note that, despite the conceptual appeal of
this framework, thorough empirical testing remains obligatory prior to any progression toward human trials.
Crafting viable oncology agents necessitates profound insight into the elaborate biomolecular interplay, coupled
with rigorous scrutiny of conceivable toxicities and durability of benefits [25-28].

Within this work, poly-target virtual screening was executed via HTVS, SP, and XP methodologies, succeeded
by MM/GBSA pose optimisation, applied to clinically authorised compounds against four pivotal breast cancer
targets. This process culminated in recognising IRESSA as a poly-target binder. Complementary DFT evaluations
and molecular dynamics trajectories were undertaken to corroborate the virtual findings computationally and to
evaluate IRESSA's feasibility as a poly-target therapeutic prospect. IRESSA, chemically gefitinib, serves as an
established agent for managing select malignancies, notably non-small cell lung carcinoma. As a member of the
tyrosine kinase inhibitor family, it operates by intercepting oncogenic signals within malignant cells, thereby
halting their multiplication.

Materials and Methods

To facilitate a clearer overview of the methodology, we have included a graphical abstract as Figure 1. The
detailed procedures are described below:
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Figure 1. The Graphical Abstract illustrates the entire workflow of the study, outlining the sequence of steps
from data retrieval and preparation through to molecular dynamics simulations and the identification of
IRESSA as a candidate against breast cancer.

Protein and ligand preparations

Key proteins implicated in breast cancer were selected, and their crystal structures in PDB format were retrieved
from <http://rcsb.org/> using the identifiers 4KD7, 3RCD, 1M17, and SNWH. These structures underwent
preparation via the Protein Preparation Workflow (PPW) within Schrédinger’s Maestro suite [13-16, 29-31]. Pre-
docking protein refinement is essential to ensure reliable molecular recognition, involving structure correction,
error resolution, and geometric optimisation. This enhances the fidelity of docking outcomes, providing a more
realistic portrayal of binding pockets and improving the reliability of predictions in structure-guided drug
discovery [32, 33]. The 4KD7 entry contains two identical subunits (chains A and B), along with four ligands,
solvents, metals, and ions. The 3RCD structure includes six ligands, four protein chains (A, B, C, D), and solvent
molecules. The 1M17 structure features chain A, one ligand, and solvents. Lastly, SNWH comprises two chains
(A and B), two ligands, and solvents. In the PPW preprocess stage, termini were capped, missing side chains were
added, bond orders were assigned using CCD data, hydrogens were replaced, disulphide bonds were formed, and
zero-order bonds were set for metals. Missing loops were modelled with Prime, and heteroatom states were
generated at pH 7.4 (£2) [34-36]. In the optimisation stage, water orientations were sampled, crystal symmetry
was accounted for, and hydrogen positions on modified residues were minimised. Protonation states were
predicted using PROPKA for ionisable groups at the target pH, ensuring physiologically appropriate refinement
[37]. In the minimisation stage, heavy atoms were converged to an RMSD of 0.30 A, waters beyond 4 A from
ligands were removed, and minimisation was performed with the OPLS4 force field [38, 39]. Post-preparation,
only chain A with its bound ligand was retained for 4KD7, 3RCD, and 1M17 (all other components discarded),
whereas both chains A and B were kept for SNWH [13-16]. The library of FDA-approved drugs was sourced from
the NPC Tripod resource (<https://tripod.nih.gov/npc/>, accessed on 5 March 2023), exported, and subsequently
imported into the Maestro workspace [30, 40]. Ligand preparation prior to docking is critical for accurate virtual
screening, as it refines geometries, corrects structural flaws, and applies appropriate ionisation states. This step
ensures robust predictions of binding modes, thereby increasing the precision and efficiency of docking-based
drug discovery efforts. The ligand collection was processed using LigPrep, restricting molecular size to 500 atoms
and employing the OPLS4 force field. Ionisation variants were generated at pH 7 = 2, with desalting and tautomer
production enabled [30, 36-39, 41]. Stereoisomer generation retained defined chiral centres while producing up
to 32 variants per input ligand, with results exported to an SDF file [41]. Duplicates within the library were
subsequently eliminated using Maestro’s duplicate remover tool, which identifies redundancy via canonical
SMILES, retaining only unique structures [30].

Grid computation and multitargeted molecular docking
The Receptor Grid Generation module was employed to construct grids around the target proteins, a fundamental
procedure in docking investigations. This entails defining a three-dimensional grid encompassing the protein to
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map prospective ligand-binding regions. The grid facilitates systematic sampling of ligand poses and orientations
during docking, thereby improving the precision of predicted protein—ligand associations in drug development
pipelines. Within the Receptor Grid tool, the option to select ligand molecules was activated, followed by
designation of the native ligand to centre the active site on its workspace centroid. The docking box dimensions
(‘dock ligand with length’) were then resized to fully enclose the reference ligand [42, 43]. Subsequently, the
Virtual Screening Workflow (VSW) tool, a widely utilised platform for tiered compound evaluation, was applied
to perform multistage screening [42, 43]. The prepared SDF ligand library served as input, with Lipinski’s rule
enforced as a filter necessitating QikProp descriptor calculations [30, 44, 45]. Ligand preparation was bypassed
since preprocessing had already been completed, and individual receptor grid files were manually assigned in the
receptors panel. In the docking parameters, Epik state penalties were incorporated, and docking progressed
through High Throughput Virtual Screening (HTVS), Standard Precision (SP), and Extra Precision (XP) protocols
[36]. HTVS processed the full library, retaining only the top 10% for advancement to SP. Likewise, the leading
10% from SP proceeded to XP. In the XP phase, up to four poses were generated per ligand, and all XP-docked
complexes were submitted for MM/GBSA rescoring using molecular mechanics with generalised Born surface
area solvation [34, 46-51]. This cascaded filtering strategy optimised resource allocation by concentrating
intensive calculations on high-potential hits. Upon completion, results were exported to CSV format for
downstream analysis to determine drug-target interaction frequencies.

Molecular interaction fingerprints

Molecular Interaction Fingerprints (IFPs) constitute a cheminformatics technique that encodes ligand—
environment contacts into a comparable binary or bit-string representation, capturing the presence of specific
interaction types. The Interaction Fingerprints utility in Maestro was utilised to generate these profiles [30].
Receptor-ligand complexes were imported, all contact types were recorded, sequences were aligned to
accommodate structural differences, and advanced options retained default values before fingerprint computation.
In the resulting interaction matrix, contacts were visualised with colour coding in the primary plot, displaying
only residues engaged in interactions. Additional panels depicted counts of ligand-centric and residue-centric
interactions.

Pharmacokinetic and DFT studies

Pharmacokinetic evaluations investigate drug absorption, distribution, metabolism, and excretion profiles,
elucidating bodily processing, bioavailability, metabolic pathways, and clearance rates. Such data inform dosing
regimens to maximise safety and efficacy in clinical settings. Pharmacokinetic profiling of screened compounds
was integrated via QikProp during virtual screening, with Lipinski’s rule applied as a key filter—an integral
component of the workflow [30, 44, 45]. Computed descriptors were benchmarked against established reference
ranges. Density Functional Theory (DFT) geometry optimisation and property calculations were conducted using
the Jaguar module within Maestro, leveraging quantum mechanical principles to refine structures and probe
electronic characteristics [30, 52]. In drug discovery contexts, Jaguar enhances molecular model fidelity,
providing insights into energetics and reactivity that bolster subsequent predictive computations [30, 53]. Input
comprised the ligand structures, employing the B3LYP-D3 functional with a 6-31 G** basis set by default. The
DFT method was specified in the theory panel, with automatic SCF spin multiplicity. Three-body dispersion
correction was activated alongside compatible dispersion functionals. SCF accuracy was set to quick mode,
starting from an atomic overlap initial guess. Convergence thresholds included a maximum of 48 iterations, energy
variation of 5 x 10—5 Hartree, and RMS density matrix change of 5 x 10—6 [30, 52]. SCF acceleration utilised a
0 Hartree level shift, no thermal smearing, and the DIIS algorithm. Orbital consistency was enforced across
isomers, using a single basis set without post-calculation localisation. Geometry optimisation allowed up to 100
steps, transitioning to analytic integrals near convergence, with default convergence criteria and an initial Schlegel
Hessian in redundant internal coordinates. In the properties section, vibrational frequencies were calculated from
the available Hessian, incorporating IR intensities and predominant isotopes; thermochemical data were generated
at 1.0 atm and 298.15 K. Molecular surfaces were computed for electrostatic potential, average local ionisation
energy, non-covalent interactions, electron density, spin density, HOMO, and LUMO, applying the PBF solvation
model with water as solvent. Results were archived for review via the QM-Monitor interface [30, 52].

Molecular dynamics simulation’s system preparation and production run
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In this investigation, Desmond was utilised for molecular dynamics simulations to explore the interaction
dynamics of IRESSA with breast cancer-associated proteins, yielding detailed information on protein—ligand
contacts and revealing aspects of stability, flexibility, and intermolecular forces [33, 54]. This computational
technique deepens our atomic-scale understanding of IRESSA’s performance, guiding advancements in drug
development [55]. The System Builder and Molecular Dynamics modules in computational chemistry are
employed to assemble starting configurations for simulations and to execute production trajectories that model
atomic motions over time [30, 54, 55]. Combined, they facilitate examination of dynamic properties in intricate
biomolecular assemblies. The System Builder tool was applied to generate the simulation systems, incorporating
the pre-defined SPC water model within an orthorhombic box with 10 x 10 x 10 A buffer distances from the
protein—ligand (P-L) complexes, ensuring appropriate enclosure [56]. Ion and salt placement was restricted
outside a 20 A radius. System neutrality was achieved by adding 2CI— to the IRESSA-4KD7 complex, 6Na+ to
the IRESSA-3RCD complex, 5Na+ to the IRESSA-1M17 complex, and 10Na+ to the IRESSA-5NWH complex.
Box volume was further optimised to snugly accommodate each P-L complex. The OPLS4 force field was
selected [38, 39], resulting in system sizes of 23,913 atoms for IRESSA-4KD?7, 35,222 atoms for IRESSA-3RCD,
57,074 atoms for IRESSA—1M17, and 29,060 atoms for IRESSA—SNWH. The Molecular Dynamics panel was
used to import the prepared systems, configuring a 100 ns simulation duration with trajectory recording every 100
ps and an energy recording interval of 1.2 ps, producing 1000 frames per run [30, 54, 55]. Simulations employed
the NPT ensemble at 300 K and 1.01325 bar. Systems underwent relaxation prior to production, and resulting
trajectories were analysed via the Simulation Interaction Diagram tool [30, 57].

Results and Discussion

Protein—ligand molecular interaction analysis

Computational docking of proteins and ligands predicts the binding configuration of a small-molecule candidate
(ligand) to its macromolecular target through simulation. Its chief aim is to decipher affiliation patterns, thereby
supporting the optimised creation of efficacious medicines. This method functions as an in silico iterative
refinement, assessing diverse chemical entities' accommodation within protein cavities to pinpoint viable
therapeutic contenders. Binding of the IRESSA molecule to Dihydrofolate reductase (PDB ID: 4KD7) achieved
a docking score of —8.809 kcal/mol alongside an MM/GBSA value of —59.08 kcal/mol, facilitated through a
hydrogen bond involving the ALA9 residue and the ligand's NH moiety (Table 1, Figures 2Aa and 2Ab). The
HER2 Kinase assembly (PDB ID: 3RCD) bound to IRESSA registered a docking score of —8.459 kcal/mol and
MM/GBSA of —60.59 kcal/mol, incorporating a hydrogen bond from MET801 to a nitrogen atom plus a halogen
interaction from ASP863 to the ligand's chlorine atom (Table 1, Figures 2Ba and 2Bb). Association of IRESSA
with the epidermal growth factor receptor (PDB ID: 1M17) delivered a docking score of —9.021 kcal/mol and
MM/GBSA of —61.74 kcal/mol, encompassing dual hydrogen bonds to MET769 (nitrogen) and ASP831
(protonated nitrogen), a salt bridge to ASP831 (protonated nitrogen), and a halogen contact to LEU764 (ligand
chlorine) (Table 1, Figures 2Ca and 2Cb). Engagement of NUDT5 (PDB ID: SNWH) with IRESSA gave a
docking score of —4.527 kcal/mol and MM/GBSA of —49.09 kcal/mol, featuring dual hydrogen bonds to TYR90
(nitrogen) and PHE167 (ligand NH), complemented by dual pi—pi stacking from TYRO90 to the ligand's aromatic
rings (Table 1, Figures 2Da and 2Db).

A) B)
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Figure 2. Illustrating interaction schematics between the proteins and IRESSA ligand, demonstrating site
coverage alongside comprehensive perspectives: (Aa) 4KD7 three-dimensional, (Ab) 4KD7 two-dimensional,
(Ba) 3RCD three-dimensional, (Bb) 3RCD two-dimensional, (Ca) 1M17 three-dimensional, (Cb) 1IM17 two-

dimensional, (Da) SNWH three-dimensional, and (Db) SNWH two-dimensional. An accompanying key
explains residue categories and bond varieties.

Table 1. Displaying docking energies (kcal/mol), MM/GBSA energies (kcal/mol), and supplementary metrics
for the interactions of all four targets with IRESSA.

S Docking Prime Prime Ligand Ligand
No PDB ID Score MMGBSA Hbond vdW Efficiency In Efficiency sa

1 4KD7 —8.809 —59.08 -91.21 —897.44 —1.987 —0.893

2 3RCD —8.459 —60.59 —152.23 —1316.69 —1.908 —0.857

3 IM17 —9.021 -61.74 —-151.3 —1374.68 —2.035 -0.914

4 SNWH —4.527 —49.09 -97.75 —703.04 —-1.021 —0.459

Molecular Interaction Fingerprints

Molecular interaction fingerprinting represents a technique designed to examine the detailed contacts between a
ligand and a target protein, generating a distinctive profile that highlights specific binding features. The IRESSA
complexes formed with 4KD7, 3RCD, 1M17, and SNWH exhibited numerous contacts contributing to their
stability. The maximum (identical) number of interactions occurred in 4KD7 and 3RCD, followed by 1M17 in
second place and SNWH in third, based on the total count of ligand contacts (Figure 3), (right side). The frequency
of residue engagements with IRESSA is displayed on the upper portion of Figure 3, revealing the most frequently
involved residues with the following occurrence counts: LEU (8), VAL (6), LYS (6), ASN (6), ILE (5), GLU (5),
ARG (4), PRO (3), ASP (3), PHE (2), GLY (2), ALA (2), TYR (1), THR (1), SER (1), and GLN (1). Hydrophobic
residues reduce solvent exposure to enhance complex stability, with Leucine (LEU) participating in eight
interactions. Valine (VAL) and Isoleucine (ILE) also contribute notably, registering six and five contacts,
respectively. Polar residues, capable of hydrogen bonding, bolster binding strength through Lysine (LYS) and
Asparagine (ASN), each with six engagements, whereas Threonine (THR) and Serine (SER) each provide one.
Charged residues drive electrostatic contributions essential for salt bridges and ionic contacts, prominently
featuring Arginine (ARG) with four interactions and Aspartic acid (ASP) with three, the latter supporting both
hydrogen bonds and salt bridges. Aromatic residues facilitate pi—pi stacking via Phenylalanine (PHE) and
Tyrosine (TYR), each involved in two interactions with IRESSA’s benzene rings. Compact residues like Alanine
(ALA) and Glycine (GLY) deliver modest but significant roles, each with two contacts, aiding binding site
adaptability. Proline (PRO) participates in three interactions, potentially shaping local pocket geometry and
promoting overall complex integrity. Glutamic Acid (GLU) stands out with five interactions, leveraging its side
chain for hydrogen bonds and salt bridges, demonstrating its multifunctional binding capacity. This in-depth
evaluation deepens insight into the mechanistic foundation of IRESSA’s polypharmacological profile, reinforcing
its potential as a therapeutic option for breast cancer.
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Figure 3. Illustrating the Molecular Interaction Fingerprinting of IRESSA across the four proteins. The
coloured diagram depicts distributions of interacting residues, with the right-side panel indicating ligand
interaction counts and the upper panel showing residue interaction frequencies, facilitating identification of
dominant residue—ligand pairings.

DFT and pharmacokinetic studies

In this thorough examination of IRESSA as a potential therapeutic agent, we applied the TDDFT(b31yp-d3)/SOLV
approach using a 6-31 g** basis set, yielding an extensive array of molecular descriptors that illuminate key
physicochemical attributes. The total count of canonical orbitals, fundamental to electronic configuration analysis,
stood at 587. Geometry optimisation achieved a convergence level classified as four, reflecting high structural
refinement accuracy. Energy assessments revealed a gas-phase ground state energy of —1857.538131 and a
marginally stabilised solution-phase value of —1857.5665. The computed solvation energy, indicative of
environmental adaptability, amounted to —17.801717 kcal/mol. Electronic properties were extensively
characterised, particularly through HOMO and LUMO energies, which inform reactivity and stability, alongside
data on the lowest singlet excitation and corresponding oscillator strength.

To explore IRESSA’s spectroscopic behaviour, three-dimensional dipole moment components (X, Y, and Z) were
evaluated, shedding light on molecular polarity. Electrostatic potential (ESP) metrics—including minimum,
maximum, average values, and variance—were carefully assessed to elucidate intermolecular interaction
tendencies. Likewise, Average Local Ionisation Energy (ALIE) descriptors, covering minimum, maximum, mean,
and balance parameters, together with the Average Absolute Deviation from the Mean ALIE, offered valuable
perspectives on regional reactivity and ionisation uniformity. Graphical depictions in Figure 4 illustrated various
energy landscapes, enhancing comprehension of IRESSA’s structural and energetic features. Figure 5 presented
core molecular visualisations, encompassing electron density, electrostatic potential, HOMO, and LUMO
distributions, providing essential guidance for subsequent optimisation in drug development.
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Figure 4. Illustrating the various energy levels obtained following multiple optimisation iterations across

time, alongside comparisons to the relative energy states of the compounds. The Grad Max is depicted in

blue, Disp Max in green, Grad RMS in orange, and Disp RMS in red. Unsigned dE appears in magenta,
whereas the relative energy (in Hartree units) is represented in black.

electrostatic potential

LUMO
Figure 5. Depicting the distinct energy profiles of the IRESSA compound. Representations include electron

density, electrostatic potential, as well as the HOMO and LUMO regions, to elucidate the molecule’s energy
distribution at both lower and higher orbitals.

Assessment of IRESSA via QikProp involved examining multiple descriptors and derived parameters against
established benchmark values, yielding key information on its drug-like attributes. IRESSA displayed zero acidic
or amidine functionalities, complying with the recommended limit of 0—1 for each. It possessed one amine group,
also within the permitted 0—1 range. The molecule incorporated 22 out of 56 atoms, reflecting appropriate
structural complexity. Predictions for metabolic sites numbered five, situated comfortably in the 1-8 acceptable
window. The count of nitrogen and oxygen atoms reached 7, consistent with the standard interval of 2—15 (Table
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2). For lipophilicity and permeability, the QPlogPw registered 10.783, inside the 4.0—45.0 bounds. The polar
surface area (PSA) measured 61.141, well within the 7.0-200.0 guideline, signalling advantageous polarity.
Human oral absorption proved outstanding, achieving a PercentHumanOralAbsorption of 100%, exceeding the
high-absorption benchmark of >80%. On safety aspects, QikProp highlighted a potential issue with QPlogHERG
at —7.087, falling below the —5 concern threshold (Table 2). The QPlogKhsa of 0.349 remained within the —1.5
to 1.5 range, indicating suitable human serum albumin binding. IRESSA conformed to both Lipinski’s Rule of
Five and Rule of Three, presenting a QPlogBB of 0.312 and QPlogPo/w of 4.31. Additional physicochemical
metrics—including SAfluorine, SASA, volume, and WPSA—aligned with recommended limits, supporting
strong drug-like potential (Table 2). Overall, the QikProp analysis revealed that IRESSA exhibits favourable
pharmacokinetic characteristics in line with conventional drug development criteria, reinforcing its candidacy as
a viable and potentially safe therapeutic agent.

Table 2. Presenting the ADMET profile of the IRESSA compound alongside comparisons to QikProp reference

standards.
Descriptor Iressa Standard/Acceptable Descriptor Iressa Standard/Acceptable
P Value Range P Value Range
Number of 0 01 Human Oral 3
carboxylic acids Absorption
Number of amides 0 0-1 lonization 8.475 7.9-10.5
Potential (¢V)
N
un'lb'er of 0 0 Apparent MDCK 0.007 )
amidines permeability
Number of amines 1 0-1 Molecular Weight  446.908 130.0-725.0
Atoms in 3- or 4- Percent Human
0 - 100 >80% high, <259
membered rings Oral Absorption 70 high, 7o poor
Atoms in 5- (?r 6- » i Pi (hydrophobic) 242502 0.0-450.0
membered rings Surface Area
Predicted
metabolic 5 1-8 Polar Surface Area 61.141 7.0-200.0
reactions
Number of Brain/Blood
nitrogen and 7 2-15 Partition 0.312 —3.0-1.2
oxygen atoms Coefficient
Number of non hERG K+ channel
co:'u ated bon(;s 4 - blockage —=7.087 concern below —5
Jug (logIC50)
Number of non- Human serum
1 - .34 —1.5-1.
hydrogen atoms 3 albumin binding 0.349 15
l.Vumber o.f at.oms 2 i Skin permeability 5632 8010
in aromatic rings (log Kp)
Number of 8 0-15 Hexadecaner/gas 5 ) 4.0-18.0
rotatable bonds partition coeff.
l.leactlve 0 02 OCtZIII.lol/W ater 431 9065
functional groups partition coeff.
Drug-lik 1
rug-likeness 0 0-5 Octanol/gas 20.444 8.0-35.0
penalty stars partition coeff.
Hydrogen bond
Water/
acceptors 7.7 2.0-20.0 atergas 10.783 4.0-45.0
. partition coeft.
(estimated)
ACxDN”0.5)/SA Predi
(ACXDN"0.5/SA ) 1101519 0.0-0.05 redicted aqueous ¢ | ~6.5-0.5
index solubility (log S)
Caco-2 cell <25 >500
Category small - aco=2 ¢ 1049.999 poor,
permeability excellent
Conformation-
MDCK cell <25 >500
independent 5.2 ~6.5-0.5 ermeabicleit 2306.642 ei’;’;rle -
QPlogS P Y
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CNS activity —2 (inactive), +2

1 . Polarizabilit 44.448 13.0-70.0
(predicted) (active) olanzabiity
(Dipole .
Rule of F
moment)*2/  0.0220798 0.0-0.13 e oF Tve 0 maximum 4
violations
Volume
Rule of Thi
Dipole moment 5.429 1.0-12.5 e of three 0 maximum 3
violations
H Ami
ydrogen bond | 0.0-6.0 mide oxygen 0 0.0-35.0
donors surface area
Electron affinity 1279 09-17 Fluorine surface 41345 0.0-100.0
(eV) area
. Total solvent-
Hydrophilic 39.187 7.0-330.0 accessible surface  758.477 300.0-1000.0
surface area
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Hydrophobic 366.922 0.0-750.0 Molecular volume ~ 1334.913 500.0-2000.0
surface area
. Weakly polar
Globularity 0.7730209 0.75-0.95 109.866 0.0-175.0

surface area

Molecular dynamics simulations

Molecular dynamics (MD) simulations track the time-dependent motion of molecular systems by numerically
integrating Newton’s equations of motion, enabling analysis of atomic trajectories and interactions that reveal
dynamic properties, including positional deviations, flexibility fluctuations, and intermolecular forces. Root-
mean-square deviation (RMSD) quantifies the mean displacement of atoms relative to a starting or reference
conformation, serving as an indicator of overall structural integrity. In contrast, root-mean-square fluctuation
(RMSF) evaluates the mobility of specific residues or atoms across the simulation timeframe. Intermolecular
interactions encompass contributions from van der Waals contacts, hydrogen bonds, and electrostatic forces,
collectively governing the system’s stability and conformational behaviour throughout the MD trajectory.

Root mean square deviation

Root Mean Square Deviation (RMSD) is a fundamental tool in computational structural biology for gauging the
typical shift in atomic positions away from a reference frame during molecular dynamics runs or when
superimposing structures. It offers a numerical summary of overall conformational differences between coordinate
sets, commonly used to benchmark simulated models against experimental ones. Smaller RMSD figures reflect
closer structural alignment and greater persistence of the initial fold. Computation requires optimal superposition
of the two structures followed by taking the square root of the averaged squared distances between corresponding
atoms, yielding an objective measure of either predictive accuracy or temporal robustness in simulations. In the
IRESSA-bound Dihydrofolate reductase (PDB ID: 4KD7), the protein started with a deviation of 0.77 A, the
ligand reached 0.42 A by 0.10 ns, and by the end of 100 ns the values stood at 2.19 A for the protein and 2.52 A
for the ligand—entirely within tolerable limits for biomolecular systems and effectively under 2 A on average
(Figure 6a). For the HER2 Kinase-IRESSA assembly (PDB ID: 3RCD), early protein deviation was 1.17 A with
the ligand at 1.77 A after 0.10 ns; by 100 ns these rose to 2.73 A (protein) and 1.99 A (ligand), demonstrating
consistently reliable stability throughout (Figure 6b). The epidermal growth factor receptor complexed with
IRESSA (PDB ID: 1M17) opened with 2.01 A protein deviation and 1.43 A for the ligand at 0.10 ns; the
subsequent trajectory proved steady, concluding at 5.49 A (protein) and 3.02 A (ligand) after 100 ns, with
deviations falling into acceptable ranges once the initial 1 ns equilibration period is excluded (Figure 6c¢). The
NUDTS5-IRESSA pairing (PDB ID: SNWH) began at 1.83 A for the protein and moved to 2.05 A for the ligand
by 0.10 ns, eventually reaching 6.87 A (protein) and 19 A (ligand) at 100 ns—a notably larger excursion (Figure
6d). These trajectory details deepen our appreciation of how IRESSA maintains binding integrity across diverse
breast cancer targets. Plots distinguish Ca traces in blue, full backbone in green, and ligand in red.
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Figure 6. Displaying Root Mean Square Deviation (RMSD) profiles for IRESSA (red) against Ca (blue) and
backbone (army green) atoms in the protein complexes (a) 4KD7, (b) 3RCD, (c) 1IM17, and (d) SNWH across
the 100 ns molecular dynamics simulation.

Root mean square fluctuations

Root Mean Square Fluctuation (RMSF) quantifies the mobility of specific atoms or residues in a biomolecule over
the course of a molecular dynamics simulation by measuring their variance from the time-averaged position. It
highlights regions of high flexibility versus rigidity within the structure. The 4KD7-IRESSA system revealed
several residues exceeding 2 A fluctuation: VAL1, GLY2, ASN19, PRO103, GLU104, GLU154, GLY 164,
SER167, and ASP186. A substantial number of residues formed stabilising contacts with IRESSA, namely ILE7,
VALS, ALA9, ILE16, ASN19, GLY20, LEU22, GLU30, PHE31, TYR33, PHE34, GLN35, MET52, LYSS55,
THRS56, SER59, ILE60, PRO61, LYS63, ASN64, PRO66, LEU67, ARG70, VAL115, SER118, TYR121, and
THR146 (Figure 7a). In the 3RCD-IRESSA complex, residues showing >2 A mobility included ALA710,
ASN745, SER792, GLU876-LYS883, GLN990-PR0999, ASP1011, ASP1013, and VAL1018-GLU1022;
residues contributing to complex integrity through ligand contacts were LEU726, SER728, ALA730, PHE731,
VAL734, ALA751, LYS753, SER783, LEU785, THR798, LEU800, MET801, CYS805, LEU807, ASP808,
ARGS811, ASP845, ARG849, ASN850, LEU852, THR862, ASP863, GLY881, PHE1004, and LEU1008 (Figure
7b). For the 1M17-IRESSA assembly, highly mobile segments (>2 A) encompassed GLY672-ALA678,
GLY711-LYS713, GLU725-LYS730, SER760, HIS781-GLY786, ALA840, GLU841, ALA847-GLY850,
HIS864, ARG865, GLY893, PRO895, SER897, GLU898, SER901, GLU904, LYS905, PRO913, ILE914,
ARGY49, ASP950, GLN952, ARG953, and VAL956-PR0O995; stabilising interactions originated from LYS692,
LEU694, SER696, PHE699, VAL702, ALA719, LYS721, CYS751, THR766, LEU768, MET769, CYS773,
ASP776, ARG779, GLU780, ARG817, LEU820, THR830, and ASP831 (Figure 7c). The SNWH-IRESSA
complex featured elevated mobility (>2 A) in LYS14-THR58, THR71, LEU72, ARG84-GLY89, ASP133-
ASN138, ALA153, GLU154, ALA156, ARG157, PRO162-PHE167, ASP183, ALA184, VAL186-HIS190, and
LEU202-ASN208; residues anchoring the ligand included GLU25, GLY26, LYS27, TRP28, VAL29, LYS33,
LYS42, THR45, TRP46, GLU47, LYS81, GLN82, PHES83, ARG84, PRO85, PRO86, MET87, GLY88, TYR90,
LYS161, PRO162, ASP164, GLU166, PHE167, VAL168, GLU169, GLU188, GLU189, HIS190, and THR192
(Figure 7d).
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Figure 7. Presenting Root Mean Square Fluctuation (RMSF) values for Ca (blue) and backbone (army green)

atoms across the proteins (a) 4KD7, (b) 3RCD, (¢) 1IM17, and (d) SNWH. Green vertical lines mark residues
engaged in ligand contacts during the 100 ns molecular dynamics run.

Simulation interaction diagrams

Intermolecular forces dictate the associations between distinct molecules, profoundly affecting their
characteristics and behaviour. Van der Waals attractions arise from transient dipoles, encompassing dispersion
forces and permanent dipole interactions. Hydrogen bonds represent a stronger subset of dipole interactions,
occurring when hydrogen atoms link to highly electronegative elements. Ionic bonds stem from electrostatic pull
between oppositely charged species, whereas hydrophobic effects drive non-polar groups to aggregate away from
aqueous surroundings. Grasping these forces is essential across chemistry, biology, and materials disciplines, as
they illuminate molecular-level phenomena and material attributes. In the IRESSA-bound Dihydrofolate
reductase (PDB ID: 4KD7), numerous hydrogen bonds formed involving GLY20 and SER59 with water and a
ligand NH group, ASN64, GLY?20, and ILE16 with water, ALA9 with three ligand nitrogen atoms, and GLU30
plus ASN64 with water bridging three oxygen atoms; additionally, pi—pi stacking occurred between TYR121 and
a benzene ring of IRESSA (Figure 8a). The HER2 Kinase-IRESSA complex (PDB ID: 3RCD) featured multiple
hydrogen bonds, including ASP863 with water and a ligand NH, THR798, THR862, ASP808, and ARG849 with
water, MET801 with three ligand nitrogens, and CYS805, LEU726, SER728, plus ASP808 with water across
three oxygens; a pi-cation interaction also linked LY'S753 to a ligand benzene ring (Figure 8b). For the epidermal
growth factor receptor paired with IRESSA (PDB ID: 1M17), eight water molecules acted as bridges enhancing
stability, alongside hydrogen bonds from ASP776 to a protonated ligand nitrogen, ASP831 via water to a ligand
NH, MET768, THR830, and THR766 with water mediating two ligand nitrogens, and ASP776 plus CYS773 with
two ligand oxygens; a salt bridge further connected ASP776 to the ligand’s protonated nitrogen (Figure 8c). The
NUDTS5-IRESSA assembly (PDB ID: SNWH) displayed hydrogen bonds involving GLY88 with a ligand NH
and VALI168, TYR90, plus GLU169 with water bridging two ligand nitrogens, complemented by seven pi—pi
stacking contacts from TYR90, PHE83, HIS190, and PHE167 to three benzene rings of IRESSA (Figure 8d).
Ligand-contacting residues are highlighted in green for clarity on binding sites, with backbone traces compared
to Ca fluctuations for deeper insight. Interaction frequencies are summarised in Figure 9, presented as histograms
categorising H-bonds, hydrophobic contacts, ionic bonds, and water bridges.
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Figure 8. Depicting the simulation interaction profiles for IRESSA within complexes of (a) 4KD7, (b)
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Figure 9. Quantifying interactions from the simulation diagrams of IRESSA across complexes with (a)
4KD7, (b) 3RCD, (c) 1M17, and (d) SNWH, with H-bonds in green, ionic in red, hydrophobic in grey, and
water bridges in blue.
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The findings from our in-depth investigation position IRESSA as a strong candidate for multitargeted therapy in
breast cancer. Our work commenced with protein—ligand docking simulations to elucidate the detailed binding
modes of IRESSA with critical breast cancer-related proteins: Dihydrofolate reductase (PDB ID: 4KD7), HER2
Kinase (PDB ID: 3RCD), epidermal growth factor receptor (PDB ID: 1M17), and NUDTS (PDB ID: SNWH).
Docking scores and MM/GBSA energies proved essential for evaluating binding strength and complex durability.
IRESSA exhibited potent engagements through hydrogen bonds, halogen bonds, and salt bridges, resulting in
robust complexes with these targets. These binding patterns are visually captured in Figure 2, highlighting key
participating residues and confirming overall complex integrity. Additional understanding of interaction profiles
emerged from molecular interaction fingerprinting, which mapped ligand contact distributions and identified the
most frequently engaged residues. Diverse amino acid classes coordinate a network of stabilising contributions
that dictate IRESSA’s attachment to pivotal breast cancer proteins (Figure 3). Leading the hydrophobic
contributions, Leucine (LEU) registered eight contacts, supported by Valine (VAL) with six and Isoleucine (ILE)
with five, together creating a non-polar core that shields the complex from solvent and bolsters stability. Polar
amino acids, notably Lysine (LYS) and Asparagine (ASN), each with six engagements, are central to hydrogen
bond formation, thereby strengthening affinity. Charged groups, headed by Arginine (ARG) at four interactions
and Aspartic Acid (ASP) at three, harness electrostatic forces to generate salt bridges and ionic contacts,
introducing further sophistication. Aromatic side chains from Phenylalanine (PHE) and Tyrosine (TYR), each
contributing two contacts, facilitate pi—pi stacking against IRESSA’s aromatic rings. Compact residues such as
Alanine (ALA) and Glycine (GLY), both with two interactions, modestly enhance pocket flexibility and
accommodation. Proline (PRO), owing to its conformational constraints, engages in three contacts that may shape
local geometry. Glutamic Acid (GLU), with five interactions, demonstrates broad utility by mediating both
hydrogen bonds and salt bridges. This elaborate orchestration of residue contributions deepens insight into
IRESSA’s binding rationale and underscores its promise as a polypharmacological agent against breast cancer.
The thorough examination presented in Figure 4 illuminates IRESSA’s consistent performance across varied
targets. Quantum chemical calculations, conducted via the TDDFT(b31lyp-d3)/SOLV approach with a 6-31 g**
basis set, probed the molecule’s electronic framework and energetic profile. A wide array of descriptors—from
canonical orbital count to solvation energy—delivered a detailed portrait of its properties. Figure 4 consolidates
these outcomes, revealing the nuanced molecular characteristics of IRESSA. Drug-likeness assessment was
advanced through QikProp evaluation, encompassing numerous descriptors benchmarked against reference
standards. Critical attributes related to lipophilicity, permeability, and toxicity flags were inspected. Overall,
IRESSA displayed favourable pharmacokinetic traits conforming to conventional drug development criteria.
These data, summarised in Table 2, affirm its viability as a potent and tolerable therapeutic prospect.

Our investigation extended into molecular dynamics (MD) simulations, which capture the time-evolving
behaviour of molecules and yield detailed perspectives on IRESSA’s conformational stability and flexibility.
Analyses of Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) delivered
numerical evaluations of structural shifts and regional mobility, respectively. As shown in Figures 6 and 7, the
trajectories revealed stable IRESSA complexes characterised by tolerable deviations and confined fluctuations.
The Simulation Interaction Diagrams presented in Figure 8 deepened this insight by dissecting the operative
intermolecular contacts. Specific details on hydrogen bonds, pi—pi stacking, and water-mediated bridges furnished
a fine-grained view of the factors sustaining complex integrity. A quantitative summary of interaction frequencies
appeared in Figure 9, highlighting the dominance of hydrogen bonds, hydrophobic contacts, ionic bonds, and
water bridges.

Alignment with current advances in breast cancer drug discovery reinforces that IRESSA embodies modern
polypharmacology principles. Its diverse engagements with breast cancer-associated proteins, combined with
advantageous physicochemical attributes, establish it as an attractive multitargeted therapeutic prospect. The
orchestrated interplay of molecular forces uncovered here adds refined contributions to the progressing field of
breast cancer treatment strategies.

In summary, IRESSA stands out from this work as a versatile and encouraging candidate for breast cancer
management. Integration of computational docking, quantum mechanical calculations, and molecular dynamics
simulations yields a comprehensive molecular-level portrait of its performance [58-60]. These outcomes not only
expand understanding of IRESSA but also enrich the wider conversation on drug design and development,
particularly for breast cancer where precise and potent interventions remain critically needed. IRESSA, originally
designed as an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for lung cancer, has attracted
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interest for possible applications in breast cancer [58-60]. Overactivation of EGFR can drive tumour cell
proliferation, and evidence indicates potential activity of IRESSA against certain breast cancer subtypes with
elevated EGFR expression. Nevertheless, its utility in breast cancer is far less consolidated than in lung cancer,
where it benefits from broader clinical validation and routine application [58-60]. As with all oncological agents,
any consideration of IRESSA for breast cancer must involve thorough discussion with oncology specialists,
accounting for tumour characteristics, patient health status, and alternative therapies. Remaining current with
emerging research and seeking tailored guidance from healthcare providers is essential.

This investigation delivers an extensive appraisal of IRESSA as a prospective multitargeted agent against breast
cancer, leveraging an integrated suite of computational modelling, quantum chemistry, and molecular dynamics
approaches. The granular revelations concerning protein—ligand binding, molecular descriptors, and complex
durability supply meaningful data supporting its therapeutic promise. To propel IRESSA’s evaluation forward,
progression from virtual screening to preclinical in vivo experiments and subsequent clinical trials is vital for
realistic appraisal of efficacy and tolerability. Investigating synergistic regimens, elucidating resistance pathways,
and pinpointing predictive biomarkers for patient selection represent key avenues for refinement. Moreover,
prolonging molecular dynamics trajectories to support pharmacological profiling could bolster the robustness and
translational relevance of the results. Incorporation of patient-derived xenografts or organoids, alongside vigilant
tracking of advancing literature in breast cancer therapeutics and drug innovation, will be instrumental in
sharpening IRESSA’s position within personalised treatment paradigms. Ultimately, the present work establishes
a solid platform for viewing IRESSA as a polyvalent candidate, while the proposed next steps seek to translate in
silico forecasts into clinical realities, advancing the pipeline of targeted breast cancer interventions.

Conclusion

Breast cancer continues to pose a major worldwide health burden, affecting millions of women across the globe.
This work underscores the intricate issue of drug resistance in breast cancer management, highlighting the urgency
for novel therapeutic approaches. Through multitargeted virtual screening, IRESSA emerged as an encouraging
inhibitor of key oncogenic proteins. Analyses involving interaction fingerprints, DFT calculations, ADMET
profiling, and molecular dynamics simulations confirmed its binding stability, indicating prospective therapeutic
potential. Although IRESSA holds FDA approval for lung cancer, its polypharmacological profile supports
exploration of repurposing for breast cancer applications. Empirical validation remains essential to establish its
efficacy, yet these computational insights provide an optimistic pathway for subsequent investigations aimed at
overcoming resistance mechanisms in breast cancer.
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