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ABSTRACT

Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide, and conventional
therapies, such as percutaneous coronary intervention (PCI), have inherent limitations. This review focuses on
examining the potential role of nanoparticles loaded with Chinese medicine in CAD treatment. A comprehensive
literature search was conducted to summarize the properties of nanovehicle systems, targeting mechanisms, and
administration routes for various nanoparticles carrying Chinese medicine in the context of CAD therapy.
Nanoparticle-based drug delivery platforms provide several advantages, including enhanced targeting efficiency,
extended circulation time, and reduced systemic toxicity, highlighting their promise for CAD management. In
summary, Chinese medicine-loaded nanoparticles represent a novel and promising strategy for treating CAD.
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Introduction

Coronary heart disease develops when atherosclerotic plaques narrow or block the coronary arteries, restricting
blood flow and causing damage to heart tissue. In China, both the prevalence and mortality of coronary artery
disease (CAD) are rising. Estimates from 2020 indicate that around 330 million people suffer from cardiovascular
diseases, with 11.39 million cases specifically attributed to coronary heart disease [1]. Current therapeutic
approaches include percutaneous coronary intervention (PCI), coronary bypass surgery, and long-term use of
anticoagulant, antiplatelet, and lipid-lowering drugs. Despite their effectiveness, these treatments can lead to
adverse outcomes such as vascular restenosis, plaque progression, abnormal neovascularization, and drug-related
systemic toxicity.

Advances in nanotechnology have opened new avenues for diagnosing and managing coronary heart disease.
Applications range from targeted cardiovascular imaging and nanoeluting stents to sophisticated nanoparticle-
based drug delivery systems. In particular, nanoparticle-mediated drug delivery has emerged as a promising
strategy, offering improved targeting, reduced systemic side effects, and enhanced therapeutic potential for CAD
patients [2]. This review examines the use of nanoparticle-based systems carrying Chinese medicine as an
innovative approach for coronary heart disease therapy.

Nanoparticle characteristics

Nanoparticles have emerged as highly promising drug delivery vehicles due to their ability to target specific
tissues, combined with favorable properties such as low toxicity, biodegradability, and biocompatibility [3]. In
biomedical applications, nanotechnology plays a versatile role, including in medical imaging and diagnostics,
drug and gene delivery, and as scaffolds in tissue engineering [4]. Among these, nanoparticle-based drug delivery
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systems are particularly prevalent. These systems typically involve the integration of therapeutic agents with
various nanoparticles, forming complexes that exploit the unique properties of nanomaterials to enhance targeted
delivery.

Due to their nanoscale dimensions, nanoparticles can penetrate vascular endothelium and even cross the blood-
brain barrier, facilitating efficient transport of therapeutic compounds. Additionally, parameters such as local
temperature, protein activity, pH, and external stimuli—such as ultrasound, magnetic fields, or infrared
radiation—can be optimized to achieve controlled and site-specific drug release. Nanoparticles provide a valuable
solution for transporting CAD therapeutics that otherwise suffer from poor targeting, low bioavailability, and high
tissue toxicity. Their large surface area-to-volume ratio allows the simultaneous encapsulation of multiple drugs
or bioactive molecules [5]. Research has shown that nanoparticle-based delivery systems can protect drugs from
rapid degradation, thereby extending their circulation time [6]. Moreover, targeted delivery via nanoparticles
enhances therapeutic efficacy while minimizing systemic toxicity [7, 8].

Nanoparticle targeting strategies
Passive targeted transport

The targeting strategies employed in nanoparticle-mediated drug delivery systems (NMDDs) can be broadly
classified into passive and active approaches. Passive targeting exploits the properties of atherosclerotic plaques,
which exhibit increased vascular permeability and compromised structural integrity, allowing nanoparticles
carrying small-molecule drugs to preferentially accumulate in these regions [9]. Additionally, the infiltration of
inflammatory cells within plaques further facilitates the localization of NMDDs, enhancing drug targeting [10].
Beyond tissue-specific permeability, targeted delivery can also be achieved by modulating internal or external
factors, such as local temperature or applied magnetic fields [11] (Figure 1). For example, Li ef al. developed a
system combining urokinase with Fe;Oa nanoparticles and demonstrated that the application of a magnetic field
substantially increased the rate of thrombolysis [12].
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Figure 1. Passive Targeted Delivery of Nanoparticles.

Active targeted transport
While passive targeting can increase the accumulation of nanoparticles in specific tissues, it provides little control
over their effects on surrounding healthy cells. To address this limitation, active targeting strategies are employed,
in which nanoparticles are functionalized with specific molecules—such as antibodies, peptides, or ligands—that
selectively bind to components of plaque tissue. This approach allows precise delivery to particular cell types
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within the plaque, including vascular endothelial cells, macrophages, foam cells, and collagen in the vascular
basement membrane [13] (Figure 2). For example, Benne ef al. attached the cyclic peptide Lyp-1 to the surface
of liposomes, enabling them to recognize and bind the p32 receptor on foam cells. This modification directs the
liposomes preferentially to foam cells, achieving targeted delivery to arterial plaque [14].
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Figure 2. Active Targeted Delivery of Nanoparticles.

For effective targeting, a strategy that combines both passive and active targeting is recommended. Nanocarriers
take advantage of the enhanced permeability of plaque tissue for accumulation, while surface modifications enable
precise interaction with specific components within the plaque. By integrating these approaches, drug loss or
degradation can be minimized before the nanoparticles reach their intended target, improving delivery efficiency
[15].

Nanoparticle classification in CAD

Nanoparticles can be divided based on their composition into organic types, including liposomes, micelles,
dendrimers, and polymer-based particles, and inorganic types, such as those made from silicon, carbon, gold, or
silver. Considering their biological behavior, nanoparticles may also be classified as biodegradable or responsive
to specific stimuli. They exhibit a wide range of physical and chemical traits, including size, shape, density, and
surface properties, which influence the efficiency of both passive and active targeting approaches [16]. Various
nanoparticles have been widely explored for delivering drugs in the context of coronary artery disease (CAD),
and their key features and advantages are summarized in Table 1.

Table 1 .Types of Nanoparticles and advantages.

Nanoparticle Type Drug Model / Patient l\E(?d?:l Key Advantages Reference

Prolonged circulation
time; improved delivery to
Human atherosclerosis atherosclerotic
3 Yes . [17]
patients macrophages; no negative
effects on cardiometabolic
parameters
Enhanced cardiac function
Alprostadil AMI patients post-PCI Yes ren?gge‘{if:rlllgtflf;l(iirce d [18]
adverse event incidence
Targeted delivery to
plaque macrophages;
Mouse plaque rupture modulated plaque
Yes . .
model inflammation; decreased
inflammatory cells;
reduced fibrous cap

Liposomes Prednisolone

Lipid Microsphere
Nanoparticles

PLGA Nanoparticles Pioglitazone [19]
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thickness; stabilized
plaque tissue

Patients with chronic Demonstrated safety and
Pitavastatin limb-threatening No good tolerability in [20]
ischemia patients
. . Improved lipid-lowering
Chltosa.n Rosuvastatin Hyp ercholegterolemlc Yes effect; decreased heart [21]
Nanoparticles rabbits . .
valve calcification
Reduced infarct size;
improved systolic
PEG-Coated Gold Myocardial infarction function; inhibited cardiac
. _ Yes - [22]
Nanoparticles rats fibrosis; enhanced
myocardial targeting and
cardioprotection
Ultrasmall
. . Enhanced macrophage
Superparamagnetic Acute myocardial L
. — . . . Yes targeting; excellent safety [23]
Iron Oxide infarction patients
. profile
Nanoparticles
. Improved sensitivity for
Fucoidan Elasmse._u.lduced No thrombus-targeted [24]
vascular injury rats . .
imaging
Tissue Enhanced thrombus
Plasminogen Embolic rat model No targeting and thrombolytic [25]
Activator efficiency
Liposomes

Liposome Nanoparticles: Liposome nanoparticles are spherical structures composed of phospholipid bilayers
[26]. They feature a hydrophilic interior and a hydrophobic exterior, allowing them to carry both water- and fat-
soluble compounds. Liposomes are generally non-toxic and can avoid detection by immune cells. They provide
sustained drug release, maintaining therapeutic levels in the body for longer periods, which enhances treatment
effectiveness while reducing side effects. A randomized, placebo-controlled clinical study evaluating
prednisolone-loaded liposomes in atherosclerotic macrophages showed that these nanoparticles significantly
prolonged circulation time and improved macrophage targeting without negatively impacting cardiometabolic
health [17].

Lipid Microsphere Nanoparticles: Lipid microsphere nanoparticles loaded with alprostadil have been extensively
used for cardiovascular conditions, including myocardial infarction and angina. Alprostadil helps inhibit platelet
aggregation, dilate blood vessels to improve microcirculation, expand coronary arteries, and increase myocardial
perfusion [27]. In a randomized controlled trial with 300 AMI patients undergoing percutaneous coronary
intervention (PCI), treatment with alprostadil combined with tanshinone Ila injections significantly enhanced
cardiac function and ventricular remodeling after PCI and reduced the occurrence of adverse events [18].

Polymer nanoparticles

Polymeric Nanoparticles: Polymeric nanoparticles, such as polylactic-co-glycolic acid (PLGA), polyethylene-
imine, poly-E-caprolactone (PCL), polyvinyl alcohol, and chitosan, are highly promising carriers for drug delivery
[28]. These nanoparticles have a stable structure and consistent size, allowing precise regulation of drug release.
They also exhibit excellent biocompatibility and minimal toxicity, generally without teratogenic effects. Upon
degradation, polymeric nanoparticles break down into non-toxic oligomers that are compatible with most
therapeutic agents. Their physical characteristics, including small size and high surface-to-volume ratio, enhance
cellular uptake of drugs and improve bioavailability [29].

Despite these advantages, certain polymeric nanoparticles have limitations. For example, natural polymers like
chitosan may degrade when exposed to biological fluids, reducing their effectiveness. Surface modifications can
address these issues, improving both biocompatibility and targeting ability [30].

In experimental models, polymeric nanoparticles have demonstrated enhanced therapeutic outcomes. For instance,
pioglitazone-loaded PLGA nanoparticles in a mouse atherosclerosis model outperformed free pioglitazone by
significantly reducing the number and thickness of fibrous caps. This effect was attributed to targeted delivery to
monocytes and macrophages, which regulated inflammation through receptor-mediated macrophage
differentiation [19]. Similarly, Lin et al. developed a rosuvastatin-loaded chitosan nanoparticle system using ionic
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gel preparation. In hypercholesterolemic rabbits, this nanoparticle formulation achieved greater lipid-lowering
effects and reduced heart valve calcification compared to rosuvastatin alone [20].

Furthermore, in a phase I/Ila clinical trial, PLGA nanoparticles carrying pilavastatin demonstrated excellent safety
and tolerability in patients with chronic limb-threatening ischemia, highlighting their potential as a therapeutic
strategy for vascular diseases [21].

Gold nanoparticles

Gold Nanoparticles: Gold nanoparticles, as stable inorganic metal carriers, offer multiple advantages for
cardioprotective drug delivery. Their low toxicity and non-immunogenic nature make them particularly suitable
for clinical applications. Thanks to their unique structural properties, gold nanoparticles can effectively target
ischemic tissues, enabling loaded drugs to accumulate efficiently and promote faster tissue recovery. They also
support angiogenesis by delivering exogenous growth factors to damaged areas [31].

For example, metoprolol conjugated with gold nanoparticles selectively targets B1 receptors, showing twice the
therapeutic effect in heart tissue affected by heart failure compared to the drug alone, while minimizing off-target
side effects [32]. Additionally, polyethylene glycol-coated (PEGylated) gold nanoparticles have been shown to
reduce infarct size by mitigating cardiomyocyte necrosis and apoptosis, and to regulate inflammation through
modulation of collagen deposition. These findings suggest that gold nanoparticles or their polymeric derivatives
could be promising candidates for cardiovascular therapies [22]. However, despite encouraging preclinical results,
further studies are needed to confirm their safety and efficacy in clinical settings, particularly for acute myocardial
infarction treatment.

Magnetic nanoparticles

Magnetic Nanoparticles: Magnetic nanoparticles are a type of stimulus-responsive nanomaterial that can be
precisely guided using external magnetic fields, making them highly useful for targeted drug delivery and
magnetic resonance imaging (MRI). These nanoparticles can carry cardiovascular drugs or MRI contrast agents
directly to diseased tissues, providing novel therapeutic and diagnostic opportunities [33]. Among the various
metals and metal oxides studied, iron oxide nanoparticles have gained regulatory approval from the FDA.

In cardiovascular applications, ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) have been shown
to be safe and effective, offering superior detection of myocardial infarction-related macrophages compared to
traditional gadolinium-based MRI agents [23]. Their small size allows them to penetrate the endothelium and
accumulate within atherosclerotic plaques. For example, fucoidan-coated USPIOs (USPIO-FUCO) have been
applied as MRI contrast agents to visualize thrombi in animal models by targeting activated platelets,
demonstrating the potential of magnetic nanoparticles for enhanced coronary artery disease imaging [24]
Therapeutically, magnetic nanoparticles have been used to improve the efficacy of thrombolytic treatments. In
embolized rat models, drugs such as tissue plasminogen activator bound to magnetic nanoparticles achieved
effective clot dissolution at lower doses when guided by a magnetic field, compared to free drug administration
[25]. Although some studies indicate that certain magnetic nanoparticles may cross the blood-brain barrier and
cause neuronal damage, coating them with polymers has been shown to reduce toxicity [34]. Beyond iron oxide,
other stimulus-responsive nanoparticles are available, each with unique properties that control drug release and
targeting behavior depending on the therapeutic context.

Nanoparticle-coated Chinese medicine in CAD

In traditional Chinese medicine, research has highlighted the therapeutic potential of certain herbal extracts for
managing coronary artery disease (CAD), due to their pronounced anti-inflammatory, antioxidant, lipid-
regulating, and cardioprotective effects. As a result, Chinese medicine has gained attention as a promising
treatment strategy. In this field, nanotechnology is currently being applied in two main ways. The first involves
transforming active compounds into nanoscale suspensions or cocrystals, which increases their surface area,
enhances solubility, and improves stability. For example, compounds such as curcumenol [35] and meletin [36]
have been successfully formulated into nanosuspensions (Figure 3).
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Figure 3. Mechanism of Nanoparticles in Coronary Artery Disease

The second application of nanotechnology in Chinese medicine involves using nanoparticles to deliver and
transport active herbal compounds. Compared to conventional synthetic drugs, these natural compounds offer
unique advantages, including broad biological activity and synergistic effects across multiple tissues and targets
in the body [37]. Despite these benefits, clinical use of herbal active ingredients is often limited by poor absorption,
low stability, restricted permeability, and potential toxicity to the liver and kidneys [38].

Nanotechnology provides a solution by enabling highly specific targeting of these compounds, overcoming many
of their inherent limitations. Numerous nanoparticles have been successfully utilized as carriers for active
ingredients from Chinese medicine, such as ginsenoside, puerarin, tanshinone IIA, baicalin, triptolide, and
ligustrazine [39]. The next section presents several representative nanoparticle-based delivery systems for Chinese
medicine compounds, summarized in Table 2 and illustrated in Figure 4.
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Figure 4. Nanoparticle-Enhanced Delivery of Chinese Herbal Medicines for the Treatment of Coronary
Artery Disease
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Table 2. Therapeutic Mechanisms and Benefits of Chinese Medicine Compounds Delivered via Nanoparticles

in CAD
Herbal Drug / Nanocarrier Mechanism / Effect Model / Patient  Observed Outcome  Reference
Compound System
. . Improved cardiac
Ginsenoside PEG-b-PPS .Ant10x1dant, antl-. Ischemia- function, reduced
. inflammatory, anti- . e [40]
Rg3 nanoparticles agin reperfusion rats myocardial injury,
ging decreased infarct size
Ant-inflammatory, enanced schem
. RGD/PEG- antioxidant, lipid Myocardial .
Puerarin . . . myocardium [41]
SLNs regulation, infarction rats .
: . targeting, reduced
cardioprotective . .
infarct size
Sustained release Reduced
PEG-PE micelle . 7 Acute myocardial cardiomyocyte
. anti-apoptotic, . . . N [42]
nanoparticles . ischemia rats apoptosis, minimized
reduces hemolysis .
hemolysis events
Enhanced ischemic
_ myocardium
PEﬂiCI;IﬁSA Cardioprotective, Acute myocardial targeting, lower [43]
. targeted delivery ischemia rats myocardial enzyme
nanoparticles
levels, reduced
infarct size
Anti-ischemic, anti-
Tanshinone PEG-PE micelle tlllarl:)erlr;tt)(;tlc,rlenl;?;;s Acute myocardial tziol:‘z:(%edilriil:asi) [44]
A nanoparticles plateict aggres ’ ischemia rats & every
improves ischemic tissue
microcirculation
Improved therapeutic
Lipid-polymeric Sustained release, Acute myocardial efficacy and
. . . . . L0 [45]
nanoparticles enhanced targeting ischemia rats ischemic tissue
targeting
Antioxidant, anti- Prolonged release,
- PEG-PCL apoptotic, reduces Cardiac muscle enhanced
Baicalin . . . . . [46]
nanomicelles intracellular calcium cells mitochondrial
in cardiomyocytes targeting
oo
hybrid Cardioprotective, Acute myocardial °¢ my
. . . - : targeting, reduced [47]
nanoparticles anti-cytotoxic infarction rats . -
infarct size, lower
(LPNs) >
cytotoxicity
Enhances myocardial Sustained release,
. energy metabolism, . improved
Astragaloside PEG-PE anti-apoptotic, Cardiac muscle mitochondrial [48]
v . cells L
improves hypertrophy targeting, increased
and fibrosis anti-apoptotic effect
Enhanced
mitochondrial
PLGA-b-PEG- Mitochondrial . dehvetry, mp rpved
. Acute myocardial cardiac function,
TPP polymer targeting, . : . [49]
. . . infarction rats reduced myocardial
nanomicelles cardioprotective . .
and mitochondrial
injury, mitigated
inflammation
Aptlomdant, anti- Patients post- Improved lipid
. . inflammatory, . profile, reduced
Curcumin Nanomicelles . 7. coronary elective S [50]
anticoagulant, lipid- . oxidative stress and
. angioplasty . .
regulating inflammation
Albumin . . . Advanced non- Increased symptom
. . Anti-proliferative, .
Paclitaxel nanoparticles . small cell lung remission, fewer [51]
anticancer :
(Abraxane) cancer patients adverse effects
Linosomal Aortic Reduced lesion size,
poson Anti-atherosclerotic atherosclerosis lower incidence of [52]
nanoparticles . . .
patients toxic reactions
Ginsenosides
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Ginsenoside Rg3: Ginsenoside, a bioactive component extracted from ginseng, exhibits notable anti-inflammatory
and antioxidant effects, suggesting its potential for alleviating cancer-related symptoms and slowing aging.
Among the various ginsenosides, Rg3 has been the focus of extensive clinical research. However, its therapeutic
use in coronary artery disease (CAD) is limited by poor membrane permeability, low bioavailability, and a short
half-life [53]. Despite these challenges, ginsenoside Rg3 has been shown to effectively suppress reactive oxygen
species, contributing to the mitigation of myocardial ischemia. To overcome these limitations, Li ef al. engineered
PEG-b-PPS-Rg3 nanoparticles that are responsive to reactive oxygen species. These nanoparticles efficiently
delivered ginsenoside Rg3, and in an ischemia-reperfusion rat model, they provided protection of cardiac diastolic
function and reduced the size of myocardial infarctions [40].

Puerarin

Puerarin: Puerarin, a bioactive compound with antioxidant and anti-cancer activities, also exerts protective effects
on the heart and liver, supporting its use in managing cardiovascular and cerebrovascular disorders. In clinical
practice in China, puerose sodium chloride and puerose glucose injections have been approved to treat coronary
artery disease (CAD), angina, myocardial ischemia or infarction, and retinal vein occlusion [54]. However, the
compound’s intrinsic properties—such as poor water solubility, limited permeability, and low bioavailability—
hinder its effective absorption when taken orally [55]. Simply increasing the dosage is insufficient to improve its
efficacy and may pose risks of systemic toxicity.

To overcome these pharmacokinetic limitations, researchers have turned to nanoparticle-based delivery systems.
Strategies include lipid nanoparticles modified with cyclic RGD peptides and PEG, PEG-
phosphatidylethanolamine (PEG-PE) micelles, and PEG-PLGA micelles [41-43]. Experimental studies have
shown that these nanocarriers enhance puerarin’s accumulation in cardiomyocytes, prolong its retention in the
body, and improve cardioprotective outcomes, outperforming conventional administration of the drug [56].

Tanshinone 114

Tanshinone IIA: Tanshinone IIA, derived from Salvia miltiorrhiza, offers several cardiovascular benefits,
including reducing ischemic damage, preventing thrombosis, inhibiting platelet clumping, enhancing
microcirculation, and protecting cardiomyocytes from hypoxia-induced injury—effects that parallel those
observed with astragaloside IV [57]. However, its clinical utility is limited by poor water solubility and low
bioavailability.

To improve delivery, Fang and colleagues encapsulated tanshinone IIA within PEG-PE nanoparticles using a
membrane hydration approach. Experimental results showed that these nanoparticles could selectively accumulate
in ischemic myocardial tissue while providing sustained drug release [44]. In a separate approach, Zhang et al.
employed lipid-polymer hybrid nanoparticles with surface modifications to direct tanshinone IIA specifically to
mitochondria in damaged cardiomyocytes. This targeted nanodelivery system outperformed free tanshinone IIA
by enhancing cardiac accumulation, improving biocompatibility, prolonging release, and reducing infarct size in
a rat coronary artery ligation model [45] (Figure 4).

Baicalin

Baicalin: Baicalin, the main bioactive constituent of Scutellaria baicalensis, possesses strong antioxidant activity
and exerts cardioprotective effects by reducing cardiomyocyte apoptosis and lowering intracellular calcium levels
[58]. Research has shown that baicalin can prevent mitochondrial damage—a key trigger for apoptosis—and
activate protein kinase pathways, ultimately decreasing the extent of myocardial infarction [59]. However, its poor
water solubility limits bioavailability and cellular uptake, restricting therapeutic efficacy.

To address these limitations, Li ef al. developed PEG-b-polycaprolactone (PEG-PCL) nanomicelles to deliver
baicalin with enhanced mitochondrial targeting. Studies demonstrated that these nanomicelles effectively
localized baicalin to cardiomyocyte mitochondria, reducing caspase-3 activity and reactive oxygen species (ROS)
levels associated with apoptosis, thereby improving anti-apoptotic effects in heart cells [46]. In another strategy,
Wang et al. employed lipid-polymer hybrid nanoparticles that combined the advantages of liposomes and
polymeric carriers to deliver baicalin. The nanoparticle surface was further modified with triphenylphosphonium
(TPP) and atrial natriuretic peptide to specifically target infarcted cardiomyocytes. In vitro studies revealed that
this modified system provided more sustained drug release and lower cytotoxicity compared to unmodified
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nanoparticles, while in vivo biodistribution studies showed prolonged circulation time and greater accumulation
in cardiac tissue [47].

Astragaloside IV

Astragaloside IV: Astragaloside IV, a key active component extracted from Astragalus, exerts cardioprotective
effects by enhancing myocardial contractility, improving blood flow, and safeguarding ischemic heart tissue. It
has also been shown to influence serum inflammatory markers in patients with stable coronary heart disease,
demonstrating synergistic effects similar to combined astragalus and Salvia miltiorrhiza injections [60]. Like
many other Chinese herbal compounds, its poor water solubility limits accumulation in cardiomyocytes, thereby
reducing its therapeutic efficacy.

To address this challenge, Ye et al. coated astragaloside IV with PEG-PE, which enhanced delivery to
cardiomyocytes and strengthened its anti-apoptotic effect. Experiments indicated that the nanoparticle formulation
improved cellular uptake and localization in cardiomyocytes, resulting in more effective inhibition of apoptosis
[48]. In another approach, Yang et al. designed PLGA-b-PEG-TPP polymeric nanomicelles loaded with
astragaloside IV and coated with human platelet membranes to target cardiac tissue. Their study demonstrated
that these nanomicelles significantly improved cardiac function, mitigated mitochondrial damage in the
myocardium, and reduced inflammation following myocardial infarction, outperforming free astragaloside IV
[49].

Curcumin

Curcumin: Curcumin, a bioactive polyphenolic compound extracted from turmeric, exhibits multiple
pharmacological activities, including antioxidant, anti-inflammatory, anticoagulant, and lipid-regulating effects
[61]. Nanoparticle formulations of curcumin have been increasingly explored for cardiovascular disease
management. In a randomized, double-blind, placebo-controlled clinical trial with 90 patients undergoing
coronary elective angioplasty, both curcumin and curcumin-loaded nanomicelles significantly improved lipid
profiles, antioxidant capacity, and inflammatory markers compared to placebo. Notably, the nanomicelle
formulation produced stronger effects than standard curcumin, indicating that nanoparticle delivery enhances
bioavailability and cardioprotective efficacy [50].

In a separate clinical study, also randomized, double-blind, and placebo-controlled, curcumin nanoparticles were
shown to reduce inflammation and lower lipoprotein levels in patients with type 2 diabetes and mild-to-moderate
coronary artery disease, further supporting the therapeutic advantage of nanoformulations [62]

Paclitaxel
Paclitaxel: Paclitaxel, a bioactive compound extracted from medicinal plants, is widely used to treat various
cancers, including breast, ovarian, and lung malignancies [63]. Its clinical application, however, is constrained by
poor water solubility, which limits effective dosing. Early solubilization methods often caused severe adverse
reactions, including hypersensitivity, kidney toxicity, neurotoxicity, and cardiac complications [64]. To overcome
these issues, nanotechnology-based delivery strategies have been developed. Different nanoparticle platforms—
such as polymeric micelles, liposomes, and albumin-based nanoparticles—have demonstrated promising results
in enhancing paclitaxel delivery and safety [65].
Among these formulations, Abraxane, an albumin-bound paclitaxel nanoparticle, has become the preferred
clinical approach. This system improves solubility, enhances tumor-targeting efficiency, reduces solvent-related
toxicity, and allows higher drug loading. In a randomized clinical trial including 503 patients with advanced non-
small cell lung cancer, treatment with Abraxane led to higher rates of symptom remission and fewer adverse
effects, including neutropenia and peripheral neuropathy, compared to docetaxel [S1].
Paclitaxel nanoparticles have also shown potential in cardiovascular disease therapy. In atherosclerotic rabbit
models, liposomal paclitaxel nanoparticles effectively accumulated in plaque tissue and markedly reduced lesion
size [66]. Similarly, a small clinical study with eight patients with aortic atherosclerosis reported that the
nanoparticle formulation was well tolerated, with no nanoparticle-related toxicity [52]. These findings suggest
that paclitaxel nanoparticles could be a promising approach for cardiovascular applications, though larger, well-
controlled clinical trials are required to confirm their efficacy and safety in humans.
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From their early use in cancer diagnosis and treatment to their emerging role in managing coronary heart disease
(CAD), nanotechnology has shown tremendous promise in medicine. The unique properties of nanoparticles have
expanded the scope of clinical diagnostics and therapeutic applications. In CAD, nanoparticle-based drug delivery
systems have proven effective in targeting inflammation, modulating lipid levels, and preventing vascular plaque
formation, thereby addressing some of the limitations inherent to traditional drug delivery methods. Combining
nanotechnology with traditional Chinese medicine (TCM) presents a particularly promising avenue, given the rich
diversity of bioactive compounds present in TCM. However, gaps remain in our understanding of both disease
mechanisms and the optimal use of nanoparticles in TCM, which constrain further clinical and translational
advances.

TCM encompasses a wide array of therapeutic approaches that utilize medicinal plants with distinct biological
activities, acting on specific tissues and molecular targets. Active components derived from TCM have
demonstrated antioxidant, anti-inflammatory, and anti-apoptotic effects on cardiomyocytes. Experimental studies,
both in vitro and in vivo, indicate that nanoparticle-based delivery systems can enhance the therapeutic
performance of these compounds in CAD. Nevertheless, several challenges remain. While individual TCM
components have shown efficacy against atherosclerosis, effective CAD treatment often relies on combinations
of multiple active ingredients. Interactions among these compounds are crucial for maximizing therapeutic
outcomes and minimizing toxicity. Nanoparticle delivery of a single TCM component may limit efficacy, and
combining nanoparticles with multiple TCM components could potentially disrupt these interactions or increase
drug toxicity. Future research should aim to develop nanoparticle systems capable of delivering multiple active
TCM ingredients simultaneously, providing a scientific basis for the optimization of multi-component TCM
prescriptions.

Certain TCM-derived compounds, such as paclitaxel and curcumin, have already been successfully formulated
into nanomedicines for CAD treatment, with encouraging results from clinical trials. However, broader
randomized controlled trials with larger sample sizes are needed to validate and expand their clinical use.
Another limitation of current nanoparticle systems is the reliance on passive targeting, which can be less effective
in infarcted myocardial tissue due to compromised blood flow. Advancing active targeting strategies by
identifying new molecular targets and ligands may improve drug localization and therapeutic efficacy. Despite
the growing body of research on nanoparticles, their translation into clinical practice faces several hurdles. Most
studies have focused on therapeutic outcomes, often neglecting the in vivo metabolism and clearance of
nanoparticles. Understanding these metabolic pathways is essential for ensuring safety. Additional challenges
include minimizing systemic toxicity, achieving localized nanoparticle clearance, and stabilizing nanosized drug
carriers. Moreover, the high cost of nanoparticle production presents a barrier to widespread clinical
implementation.

With ongoing research and technological advances, it is anticipated that nanoparticle-mediated drug delivery will
play an increasingly significant role in the diagnosis and treatment of CAD in the future.
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