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ABSTRACT 

Potentilla nepalensis, a member of the Rosaceae family, exhibits a wide range of medicinal properties as an 

effective herbal remedy. Previous investigations have characterized forty phytochemical compounds (PCs) 

isolated from root and stem fractions using n-hexane (NR and NS) as well as methanolic (MR and MS) solvents. 

Nonetheless, the specific influence of these PCs on human genetic elements and their physiological functions 

remain unexplored until now. This research utilized approaches including network pharmacology, molecular 

docking, molecular dynamics simulations (MDSs), and MMGBSA techniques. SMILES structures of the PCs 

retrieved from PubChem served as inputs for DIGEP-Pred, resulting in the detection of 764 target genes. 

Enrichment analyses of these genes provided insights into their ontological classifications, associated biological 

pathways, linked disorders, and relevant pharmaceuticals. Protein-protein interaction (PPI) networks generated 

via String DB, along with topological analysis conducted in Cytoscape version 3.10, highlighted three key targets: 

TP53 associated with genes induced by MS, NR, and NS extracts; and HSPCB as well as Nf-kB1 linked to MR-

induced genes. Among the 40 PCs evaluated, compounds 1b (from MR) and 2a (from MS) displayed superior 

docking energies (kcal/mol) against the p53 protein at −8.6 and −8.0, respectively, whereas compounds 3a (NR), 

4a, and 4c (NS) showed strong affinities with the HSP protein at −9.6, −8.7, and −8.2. Analyses through MDS 

and MMGBSA confirmed the stability of these ligand-protein complexes, characterized by minimal structural 

fluctuations and favorable binding free energies. The targets uncovered in this work play significant roles in 

various malignancies. Therefore, additional experimental validation via in vitro and in vivo assays is 

recommended to elucidate the precise molecular actions and underlying mechanisms of these targets across 

multiple cancer models, incorporating the PCs derived from P. nepalensis. 
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Introduction 

Herbal remedies have played a pivotal role in the evolution of contemporary medicine, serving as foundational 

sources for numerous effective treatments against various illnesses and underscoring the value of botanical 

compounds in pharmaceutical innovation [1]. Additionally, phytochemicals obtained from botanical origins 

provide benefits such as enhanced availability and reduced adverse effects relative to chemically synthesized 

medications. Incorporating plant-based therapeutic agents into modern drug design offers potential solutions for 

combating issues like microbial resistance to antibiotics [2]. 

Known commonly as Nepal cinquefoil, Potentilla nepalensis is a species within the Rosaceae family, originating 

from the Himalayan areas of Nepal and Tibet, where it thrives in high-altitude alpine and subalpine zones. 

Although frequently grown for its attractive blooms as a decorative species, P. nepalensis is highly regarded for 

its health-promoting attributes. These benefits are largely attributed to its rich profile of secondary metabolites, 
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encompassing elevated levels of phenolic compounds, flavonoids, and terpenoids, which underpin its 

pharmacological effects [3]. 

Traditionally, P. nepalensis has been applied in diverse healing practices. It has been used for promoting wound 

recovery and managing dermatological issues, alongside supporting digestive health and intestinal function. Its 

anticarcinogenic potential has also been noted [4], complemented by antioxidant capabilities that help protect 

cellular structures from damage caused by oxidation. Furthermore, the species demonstrates anti-inflammatory 

and pain-relieving effects, making it useful for reducing discomfort and inflammatory responses [3]. In Tibetan 

medicinal traditions, certain Potentilla species, including P. nepalensis, have been employed to address conditions 

like asthma, migraines, dysentery, and respiratory infections. Extracts from the roots of P. nepalensis have shown 

encouraging anticancer [5] and antibacterial properties [6]. 

The current investigation focuses on n-hexane and methanolic fractions derived from the root and stem segments 

of P. nepalensis, as analyzed previously via Gas Chromatography–Mass Spectrometry (GC-MS) [7]. The objective 

is to clarify how these fractions interact with human genetic targets by applying a combined strategy involving 

network pharmacology, molecular docking, and simulation-based dynamics. 

This research involved a series of methodical procedures. Initially, relevant data on the phytochemical compounds 

(PCs) were obtained from the PubChem repository. These compounds were then screened to pinpoint target genes 

with notable pharmacological probabilities exceeding 0.8. Next, protein–protein interaction networks were built 

for each fraction using String DB, with emphasis on determining the central genes in those networks. Molecular 

docking was subsequently carried out with AutoDock Vina. Essential proteins from the networks were sourced 

from the Protein Data Bank (PDB). Finally, molecular dynamics simulations (MDSs) and MMGBSA binding free 

energy computations were performed on complexes demonstrating high docking affinities. A schematic overview 

of the methods used in this study is illustrated in Figure 1. 

 

 

Figure 1. Flowchart illustrating the sequential computational strategies employed in this research. 

Materials and Methods  

Compound retrieval 

PubChem identifiers (IDs), two-dimensional structures, and Simplified Molecular Input Line Entry System 

(SMILES) notations for the PCs identified in P. nepalensis were obtained from the PubChem database 

https://pubchem.ncbi.nlm.nih.gov/ (accessed 5 September 2023) [8]. These compounds were previously 
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characterized from root and stem methanolic and n-hexane extracts using GC-MS [7]. PubChem serves as a 

comprehensive, open-access repository of chemical compounds with detailed annotations. 

 

Prediction of PC-induced genes 

SMILES strings of the PCs were submitted to the DIGEP-Pred web server http://www.way2drug.com/GE 

(accessed 10 September 2023) [9] to predict induced human genes, applying a pharmacological activity 

probability cutoff of Pa > 0.8. This server leverages the Prediction of Activity Spectra for Substances (PASS) 

algorithm, employing leave-one-out cross-validation and integrating both mRNA and protein expression datasets. 

 

Functional enrichment analysis 

Enrichment profiling of PC-induced human genes was executed via the Enrichr platform 

https://maayanlab.cloud/Enrichr/ (accessed 20 September 2023), using thresholds of false discovery rate (FDR) < 

0.05 and p-value < 0.05 [10]. Duplicate genes were eliminated to curate a refined input list, enabling identification 

of associated biological processes, molecular functions, cellular components, pathways, diseases, and approved 

therapeutics. 

 

Protein–protein interaction networks 

Interconnections among proteins encoded by the predicted induced genes were mapped using the STRING 

database https://string-db.org/ (accessed 28 September 2023) at a high-confidence interaction score threshold of 

0.7. Networks were assembled from diverse evidence channels, encompassing text mining, experimental 

validations, curated databases, co-expression profiles, genomic neighborhood, gene fusion, and phylogenetic co-

occurrence [11]. The resultant networks were imported into Cytoscape V3.10.0 [12] and refined using the 

Analyzer plugin to quantify network topology for the input gene sets. Key metrics evaluated included degree 

centrality, average shortest path length, clustering coefficient, closeness centrality, and betweenness centrality, 

providing quantitative measures of gene interdependencies and centrality within the interaction landscapes. 

 

Molecular docking 

Binding affinities for the protein–ligand complexes were evaluated using established molecular docking protocols 

previously described [13]. The three-dimensional structures of the TP53-binding domain (PDB ID: 6MXY) 

https://www.rcsb.org/structure/6MXY (accessed 5 October 2023), complexed with the native ligand K6M (N-[3-

(tert-butylamino)propyl]-3-(trifluoromethyl)benzamide), nuclear factor NF-kappa-B p50 (PDB ID: 3GUT) [14], 

and heat shock protein 90 (PDB ID: 1UYM) bound to PU3 (9-butyl-8-(3,4,5-trimethoxybenzyl)-9H-purin-6-

amine) [15] were downloaded from the RCSB Protein Data Bank https://www.rcsb.org/ (accessed 5 October 

2023). These structures were resolved by X-ray crystallography with resolutions of 1.62 Å, 3.59 Å, and 2.45 Å, 

respectively. 

The phytochemical compounds (PCs) in SMILES format from PubChem and the retrieved protein structures 

required preprocessing prior to docking. Ligands were optimized by adding hydrogens at physiological pH (7.4), 

generating three-dimensional conformations, and minimizing energy with the MMFF94 force field using Open 

Babel [16], which supports conversion across multiple chemical file formats. For the proteins, co-crystallized 

ligands and solvent molecules were deleted using Discovery Studio. Missing atoms were repaired, polar 

hydrogens were added, and Gasteiger partial charges were computed with AutoDock Tools [17]. 

Grid box parameters were defined to encompass the active sites accurately, thereby enabling reliable prediction 

of binding poses and affinities. Centers were positioned based on the coordinates of native ligands or the overall 

structure: for TP53 with K6M (X = −10.80, Y = 26.77, Z = −3.52), for HSP90 with PU3 (X = 3.60, Y = 11.13, Z 

= 24.75), and for NFKB (X = 28.80, Y = −23.60, Z = 58.23). Docking calculations were performed using 

AutoDock Vina [18], ensuring precise evaluation of protein–ligand interactions and binding scores. 

 

Molecular Dynamics Simulations and MMGBSA 

Molecular dynamics (MD) simulations were conducted on an Ubuntu 22.04 LTS workstation powered by an Intel 

Core i7-13700k CPU and an NVIDIA RTX 4080 GPU. All simulations and subsequent trajectory processing were 

executed with the Amber 22 suite and AmberTools 23 [19]. Docked complexes involving p53 and HSPCB were 

separated into individual ligand and protein components, with missing hydrogens supplemented via UCSF 

ChimeraX [20]. Ligand topologies and parameters were generated using the General Amber Force Field (GAFF) 



de Vries et al., Uncovering Anticancer Bioactives from Potentilla nepalensis: An Integrated Network Pharmacology, 

Molecular Docking, Molecular Dynamics, and MMGBSA-Based Approach to Therapeutic Target Identification 

 

 

315 

[19] through Antechamber, employing AM1-BCC charges. The protein was parameterized with the FF19SB force 

field [21], solvated in a TIP3P water box, and neutralized with Na⁺ and Cl⁻ ions. 

System equilibration involved 30,000 steps of energy minimization, followed by gradual heating to 300 K and 

density equilibration at 1 atm for 200 ps. Production runs spanned 300 ns using the pmemd.cuda module for GPU 

acceleration. Binding free energies were computed via the Molecular Mechanics Generalized Born Surface Area 

(MMGBSA) method [22] implemented in MMPBSA.py. Trajectory visualizations and graphical representations 

were generated using xmgrace 5.1.25 [23] and R version 4.2.3 [24]. 

Results and Discussion 

Collection of phytochemical compounds 

The n-hexane and methanolic extracts derived from the roots and stems of P. nepalensis were previously 

characterized using Gas Chromatography–Mass Spectrometry (GC-MS). That analysis identified a total of forty 

distinct phytochemicals, with ten unique compounds detected in each of the four extracts corresponding to 

different plant parts and solvents. In this work, detailed information for these compounds—including SMILES 

notations, PubChem identifiers, and two-dimensional structures—was obtained from the PubChem database. The 

compounds were grouped into four sets according to extraction conditions: 1a–1j from the n-hexane root extract 

(NR), 2a–2j from the methanolic stem extract (MS), 3a–3j from the n-hexane root extract (NR), and 4a–4j from 

the n-hexane stem extract (NS). 

 

Genes targeted by the phytoconstituents 

A thorough screening for gene interactions identified a total of 764 genes influenced by the phytochemicals. The 

methanolic root extract (MR) was linked to 149 target genes, while the methanolic stem extract (MS) influenced 

217 genes. The n-hexane root extract (NR) affected 277 genes, and the n-hexane stem extract (NS) targeted 121 

genes. These data offer a detailed profile of the human genes modulated by the phytoconstituents of P. nepalensis. 

 

Enrichment analysis 

To maintain focus and significance, only the ten most predictive terms were chosen from the gene ontology (GO) 

enrichment results, prioritizing those with the strongest functional relevance. These terms were subsequently 

summarized to highlight the key characteristics of the most highly enriched genes. 

Biological processes (BP) refer to the larger functional roles performed by gene products [25]. Among all extracts, 

the majority of genes were associated primarily with two biological processes: positive regulation of nucleic acid-

templated transcription and regulation of DNA-templated transcription, as detailed in Table 1. The methanolic 

stem extract (MS) showed the greatest degree of involvement in these processes. 

 

Table 1. Gene Ontology and Pathway Enrichment Analysis of Methanolic and n-Hexane Extracts from Root 

and Stem Tissues of P. nepalensis 

Category 
Methanolic Stem 

(MS) 
Methanolic Root (MR) n-Hexane Stem (NS) n-Hexane Root (NR) 

Cellular 

Component 

(CC) 

Nucleus; azurophil 

granule lumen 

Intracellular membrane-

bounded organelle; nucleus; 

secretory granule lumen 

Intracellular organelle 

lumen; endoplasmic 

reticulum lumen; 

secretory granule lumen 

Intracellular 

membrane-bounded 

organelle; nucleus 

Biological 

Process 

(BP) 

Positive regulation 

of nucleic-acid-

templated 

transcription 

Positive regulation of 

nucleic-acid-templated 

transcription; regulation of 

DNA-templated 

transcription 

Positive regulation of 

nucleic-acid-templated 

transcription 

Positive regulation of 

nucleic-acid-templated 

transcription 

Molecular 

Function 

(MF) 

Protein 

serine/threonine 

phosphatase 

activity 

Protein homodimerization 

activity 

DNA-binding 

transcription activator 

activity; protein 

serine/threonine 

phosphatase activity; 

oxidoreductase activity 

DNA binding; protein 

homodimerization 

activity 
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Associated 

Diseases 

Neoplasm 

metastasis; breast 

carcinoma; 

prostate malignant 

neoplasm 

Neoplasm metastasis; liver 

carcinoma; mammary 

neoplasms; melanoma 

Breast carcinoma; 

malignant breast 

neoplasm; neoplasm 

metastasis 

Neoplasm metastasis; 

liver carcinoma 

Enriched 

Pathways 

Nuclear receptors 

meta-pathway; 

osteoblast 

differentiation; 

vitamin D receptor 

pathway 

VEGFA-VEGFR2 

signaling pathway; leptin 

signaling pathway; 

microRNAs in 

cardiomyocyte 

hypertrophy; B-cell 

receptor signaling pathway 

Common pathways in 

drug addiction; 

melanoma; pyrimidine 

metabolism 

Nuclear receptors 

meta-pathway; vitamin 

D receptor pathway 

Associated 

Drugs 

Trifluoperazine; 

Pitolisant; 

Cyproheptadine; 

Pimozide; 

Brompheniramine; 

Buprenorphine; 

Lidoflazine; 

Chlorambucil 

Aprindine; Domperidone 

Stearic acid; Epalrestat; 

Dodecanoic acid; 

Gamolenic acid; 

Vemurafenib; 

Bezafibrate; Gemfibrozil; 

Linolenic acid; Aprindine; 

Eicosapentaenoic acid 

Mefenamic acid; 

Diclofenac; Flufenamic 

acid; Quercetin; 

Mezlocillin; 

Hydrochlorothiazide; 

Hydroxycarbamide; 

Bendroflumethiazide; 

Benzthiazide; 

Chlorambucil; 

Bezafibrate; 

Rosiglitazone; Stearic 

acid; Dodecanoic acid; 

Gamolenic acid; 

Aprindine; Caffeine; 

Eicosapentaenoic acid; 

Linolenic acid 

 

Molecular function (MF) describes the specific biochemical activity or role performed by a gene product [25]. A 

shared molecular function signature was observed among the genes induced by the methanolic root (MR) and n-

hexane root (NR) extracts. In particular, protein homodimerization activity and protein serine/threonine 

phosphatase activity emerged as prominent and overlapping functional categories across these two extracts. 

Similarly, the methanolic stem (MS) and n-hexane stem (NS) extracts displayed consistent enrichment patterns in 

their respective target gene sets. Furthermore, when considering the combined gene lists induced by MR+NR and 

MS+NS extracts, additional MF terms were significantly enriched. Specifically, DNA binding was enriched in 

the NR-induced gene set, while DNA-binding transcription activator activity, protein serine/threonine 

phosphatase activity, and oxidoreductase activity were notably enriched in the NS-induced genes (Table 1). These 

shared and extract-specific functional enrichments highlight promising directions for further mechanistic 

investigation. 

 

Cellular component (CC) 

Cellular component (CC) terms indicate the subcellular localization or compartment where gene products are 

primarily active [25]. Genes induced by both MR and NR extracts showed substantial overlap, with predominant 

localization in the intracellular membrane-bounded organelle and nucleus. The MR extract additionally enriched 

genes associated with the secretory granule lumen. In contrast, genes targeted by the MS extract were mainly 

localized to the nucleus and azurophil granule lumen. The NS extract induced genes with broader and more diverse 

localization, including the intracellular organelle lumen, endoplasmic reticulum lumen, and secretory granule 

lumen (Table 1). 

 

Pathway enrichment 

The genes modulated by the MR extract were significantly associated with several biologically relevant signaling 

cascades, including the VEGFA–VEGFR2 signaling pathway, leptin signaling pathway, microRNA regulation in 

cardiomyocyte hypertrophy, and B-cell receptor signaling pathway. Both the MS and NR extracts commonly 

targeted genes involved in the nuclear receptors meta-pathway and the vitamin D receptor pathway, with the MS 
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extract further enriching the osteoblast differentiation pathway. In contrast, genes induced by the NS extract were 

linked to pathways underlying common drug addiction, melanoma, and pyrimidine metabolism (Table 1). 

 

Disease association 

Analysis of disease enrichment revealed a strong and consistent association of the target genes from all four 

extracts with cancer-related pathologies, particularly neoplasm metastasis. This recurrent theme strongly suggests 

that the phytoconstituents present in the extracts may influence key processes involved in cancer progression and 

metastatic spread (Table 1). 

 

Protein–protein interaction (PPI) network analysis 

To explore functional relationships among the induced genes, protein–protein interaction networks were 

constructed using the STRING database. These networks comprise nodes (representing proteins) and edges 

(representing interactions), with evidence drawn from multiple sources including experimental data, text mining, 

gene fusion, co-expression, genomic neighborhood, and curated databases. To quantitatively characterize the 

topological properties of the resulting PPI networks, several network parameters were calculated for each protein 

node, including degree centrality, average shortest path length, clustering coefficient, closeness centrality, and 

betweenness centrality (Table 2). 

 

Table 2. Topological Parameters of Key Hub Proteins in the Protein–Protein Interaction Networks Derived from 

Induced Genes 

Extract Protein 
Average Shortest 

Path Length 

Degree 

Centrality (DC) 

Closeness Centrality 

(C. Cen) 

Clustering 

Coefficient (CC) 

Betweenness 

Centrality (BC) 

MR HSPCB 3.02 15 0.33 0.18 0.18 

MR NFKB1 2.85 15 0.34 0.25 0.33 

MS TP53 1.87 25 0.53 0.15 0.56 

NR TP53 2.32 20 0.42 0.16 0.58 

NS TP53 1.75 25 0.57 0.17 0.59 

 

The topological parameters of the PPI networks provide insight into the structural and functional importance of 

individual proteins within each extract-induced network. Degree centrality (DC) reflects the number of direct 

interactions a protein has with others, serving as a measure of its local connectivity. Average shortest path length 

indicates the typical minimum number of steps required to connect a given protein to any other node in the 

network. The clustering coefficient (CC) quantifies the tendency of a protein’s neighbors to interconnect with one 

another, often forming tightly knit functional modules. Betweenness centrality (BC) identifies proteins that lie on 

many shortest paths between other nodes, positioning them as critical bridges or bottlenecks for information flow 

across the network. Finally, closeness centrality (C. Cen) measures how quickly a protein can reach all other 

nodes, with higher values indicating greater proximity to the rest of the network. 

Based on these topological descriptors, several proteins emerged as highly influential hubs. In the network derived 

from genes induced by the methanolic root (MR) extract, HSPCB and NFKB1 exhibited prominent connectivity 

and centrality measures (Figure 2). Across the networks from the methanolic stem (MS), n-hexane root (NR), 

and n-hexane stem (NS) extracts, TP53 consistently stood out as the dominant hub protein, demonstrating the 

highest degree centrality, superior closeness and betweenness values, and relatively short average path lengths 

(Figures 3-5). 

In the visualized networks, these key hub proteins are prominently displayed in centrally positioned rectangular 

nodes with a yellow background and blue font for clear identification. The quantitative topological parameters for 

these proteins are summarized in Table 2, reinforcing their central roles. The elevated centrality scores of HSPCB, 

NFKB1, and particularly TP53 underscore their potential as key mediators of the biological effects elicited by the 

phytochemicals from P. nepalensis. These findings highlight critical nodes within the interaction networks and 

strengthen the rationale for considering these proteins as promising therapeutic targets modulated by the plant’s 

bioactive constituents. This topological evaluation thus deepens our understanding of the molecular connectivity 

and functional organization driven by the different extracts at the systems level. 

  



de Vries et al., Uncovering Anticancer Bioactives from Potentilla nepalensis: An Integrated Network Pharmacology, 

Molecular Docking, Molecular Dynamics, and MMGBSA-Based Approach to Therapeutic Target Identification 

 

 

318 

 

Figure 2. PPI Network Constructed from Genes Induced by the Methanolic Root Extract 

 

 
Figure 3. PPI network illustrating interactions between proteins encoded by genes activated by the 

methanolic extract of shoots. 
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Figure 4. PPI network showing interactions between proteins encoded by genes activated by the n-hexane 

root extract. 

 

 

Figure 5. Protein–protein interaction network of genes induced by the n-hexane shoot extract. 
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Node colors and shapes indicate the degree (number of interactions) for each gene in the network: 

• First description: Rectangular nodes with yellow background and blue font represent genes with 15 

interactions; octagonal nodes with light blue background and green font indicate 12 interactions; diamond 

nodes with light green background and pink font denote 11 interactions; round rectangular nodes with purple 

background and pink font show 10 interactions; parallelogram nodes with orange background and blue font 

correspond to 9 interactions; hexagonal nodes with light green background and red font represent 8 

interactions; elliptical nodes with light blue background and red font indicate fewer than 8 interactions. 

• Second description: Rectangular nodes with yellow background and blue font represent genes with 25 

interactions; octagonal nodes with light blue background and green font indicate 14–18 interactions; diamond 

nodes with light green background and pink font denote 8–13 interactions; elliptical nodes with light brown 

background and green font show fewer than 8 interactions. 

• Third description: Rectangular nodes with yellow background and blue font represent genes with 20 

interactions; octagonal nodes with brown background and green font indicate 11–15 interactions; hexagonal 

nodes with light pink background and pink font denote 9–10 interactions; round rectangular nodes with 

orange background and purple font correspond to 5–8 interactions; elliptical nodes with light green 

background and red font show fewer than 5 interactions. 

• Fourth description: Rectangular nodes with yellow background and blue font represent genes with 25 

interactions; octagonal nodes with light blue background and pink font indicate 10–16 interactions; hexagonal 

nodes with light green background and red font denote 7–9 interactions; rectangular nodes with light pink 

background and blue font show fewer than 7 interactions. 

 

Molecular docking 

Molecular docking studies were performed to investigate the binding interactions between the phytochemical 

compounds (PCs) and selected therapeutic target proteins using methanolic and n-hexane extracts from the roots 

and stems of P. nepalensis. The aim was to evaluate the binding affinities of these PCs toward three key proteins: 

p53 (encoded by the TP53 gene), heat shock protein (encoded by the HSPCB gene), and nuclear factor kappa light 

chain (encoded by the NFKB1 gene) (Table 2). Among these compounds, five (1b, 2a, 3a, 4a, and 4c) exhibited 

notably higher binding affinities with both p53 and heat shock proteins. 

Figure 6 and Table 3 provide details on the binding affinities and the specific amino acid residues involved in 

the interaction types. For instance, compound 1b showed a binding affinity of −8.6 kcal/mol with the p53 protein, 

mediated by a single conventional hydrogen bond with the residue Aser1503. Furthermore, two alkyl bonds 

formed, connecting the alkyl ends of 1a with the alkyl groups of BMet1584 in the p53 protein. Seventeen π-alkyl 

bonds emerged, linking the π-alkyl groups of 4ATrp1495, ATyr1502, 2APhe1519, ATyr1523, 3BTrp1495, 

3BTyr1502, 2BPhe1519, and BTyr1523 with the π-orbitals of 1b. PC 2a demonstrated −8.0 kcal/mol of binding 

affinity with the p53 protein. AMet1584 participated in an alkyl bond formation with alkyl ends. Additionally, a 

set of twelve π-alkyl bonds connecting the π-alkyl groups of 2ATrp1495, 2ATyr1502, 2APhe1519, 2BTrp1495, 

BTyr1502, 2BPhe1519, and BTyr1523 with the π-orbitals of 2a. 

 

  

1a 2a 

i) 
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3a 4a 

 

 

4c  

ii) 

Figure 6. Molecular interactions within the docked complexes. (i) p53 protein in complex with 

phytochemical compounds 1a and 2a; (ii) heat shock protein (HSP) in complex with phytochemical 

compounds 3a, 4a, and 4c. 

 

Table 3. Binding affinity (B.A.) and interactions of the heat shock protein (HSP), nuclear factor NF-kappa-BP 

(NFKB1), and TP53-binding protein (p53) with the extracted PCs of P. nepalensis. 

Complex B.A. 

(kcal 

/mol) 

Hydrogen 

Bonds 
Hydrophobic Bonds 

Other 

Bonds 
Proteins PCs CHB π-Alkyl Alkyl 

π-π 

Stacked 

π-π T 

Shaped 

π-

Sigma 

p53 

1b −8.6 ASer1503 

4ATrp1495, 

ATyr1502, 
2APhe1519, 

ATyr1523, 
3BTrp1495, 
3BTyr1502, 
2BPhe1519, 

BTyr1523 

2BMet1584 - - - - 

2a −8.0 - 

2ATrp1495, 
2ATyr1502, 
2APhe1519, 
2BTrp1495, 

BTyr1502, 
2BPhe1519, 

BTyr1523 

AMet1584 - - - - 

HSP 3a −9.6 - 
APhe138, 

Aval150 

AMet98, 
2ALeu107, 

AAla111 

APhe138 - AMet98 AMet98 
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4a −8.7 - 

3APhe138, 
2ATrp162, 

AMet98, 

ALeu107 

2AVal186, 
2AMet98, 

AVal150, 

ALeu107 

APhe138 - 2Trp162 - 

4c −8.2 2ATrp162 

APhe22, 

APhe170, 
2ALeu107, 

AMet98, 

AVal150 

AIle26 2APhe138 
ATyr139, 
2ATrp162 

- - 

PCs—phytoconstituents; CHB—conventional hydrogen bond; other bond—sulfur bond. 

 

Compounds 3a, 4a, and 4c demonstrated strong binding affinities to the HSP protein, with docking scores of −9.6, 

−8.7, and −8.2 kcal/mol, respectively. Compound 3a formed nine distinct interactions with key residues of the 

HSP protein. Notably, Met98 participated in three types of bonds: a sulfur interaction, a π-sigma bond, and an 

alkyl interaction with 3a. Additionally, three alkyl interactions occurred between the alkyl groups of Leu107 (two 

instances) and Ala111 and the ligand 3a. A π-π stacked interaction was established between the aromatic ring of 

Phe138 and 3a, enhancing complex stability. Two π-alkyl interactions were also observed involving Phe138 and 

Val150 with the aromatic system of 3a. 

For compound 4a, three π-alkyl interactions and one π-π stacked bond involved the Phe138 residue. Furthermore, 

two π-alkyl and two π-π T-shaped interactions formed with Trp162. Additional bonds included one π-alkyl and 

two alkyl interactions with Met98, one alkyl bond with Val186, and both a π-alkyl and an alkyl interaction with 

Leu107. 

Compound 4c displayed two carbon-hydrogen bonds with Trp162. Six π-alkyl interactions linked the alkyl side 

chains of Phe22, Phe170, Leu107 (two instances), Met98, and Val150 to the aromatic rings of 4c. An alkyl 

interaction was also formed with Ile26. Additionally, two π-π stacked bonds involved Phe138 (two instances), 

while three π-π T-shaped interactions occurred with Tyr139 and Trp162 (two instances). These findings elucidate 

the binding patterns and specific interactions of compounds 3a, 4a, and 4c with the HSP protein, suggesting their 

potential utility in therapeutic development. 

 

Molecular dynamics simulations and MMGBSA analysis 

Molecular dynamics (MD) simulations were conducted to evaluate the stability and dynamic behavior of the 

protein–ligand complexes in an aqueous environment, offering detailed atomic-level insights into their 

interactions. Based on the top docking poses, five complexes were selected for 300 ns MD simulations followed 

by MMGBSA calculations: (i) p53 bound to 1b, (ii) p53 bound to 2a, (iii) HSP complexed with 3a, (iv) HSP 

bound to 4a, and (v) HSP bound to 4c. Each system underwent preprocessing, including energy minimization and 

equilibration under NVT and NPT conditions. Trajectories were analyzed for root mean square deviation (RMSD), 

root mean square fluctuation (RMSF), and MMGBSA binding free energies. 

The RMSD profiles of the simulated complexes are shown in Figure 7. In panel A (Figure 7a), comparing the 

p53 complexes with ligands 1b (p53+1b) and 2a (p53+2a), the p53+2a system initially displayed greater 

fluctuations than p53+1b. The p53+1b complex exhibited consistent deviations that remained below 5 Å 

throughout. Both systems achieved stable equilibrium around 6000 frames (approximately 130 ns), with RMSD 

values stabilizing between 2–3 Å. In both cases, the ligands remained firmly within the binding pocket for the 

entire simulation duration, indicating robust complex stability. 
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a) b) 

Figure 7. Root mean square deviation (RMSD) profiles obtained from the 300 ns molecular dynamics 

simulations, segmented into 15,000 frames. Panel A illustrates the RMSD trajectories for the p53 protein 

complexes with ligands 1b (red trace) and 2a (black trace). Panel B shows the corresponding RMSD values 

for the HSP complexes with ligands 3a (pink), 4a (brown), and 4c (green). 

 

The RMSD data for the HSP complexes—HSP+3a, HSP+4a, and HSP+4c—are depicted in Figure 7b. These 

trajectories demonstrate that conformational equilibrium was reached within the first 100 ns of simulation. Initial 

fluctuations were observed across all three systems, with deviations temporarily rising early in the runs; however, 

even in the HSP+4c complex, these did not surpass 3.5 Å. Throughout the production phase, all three protein–

ligand systems maintained stable RMSD values in the range of 2–3 Å. This consistent behavior confirms the 

structural integrity of the complexes, with no evidence of ligand dissociation from the binding pockets over the 

entire simulation period. 

Root mean square fluctuation (RMSF) values, represented as B-factors, were calculated to assess per-residue 

flexibility, as shown in Figure 8. In panel A, the RMSF profiles for the p53+1b and p53+2a complexes were 

highly comparable, displaying no significant peak differences. This similarity indicates that neither ligand induced 

substantial differential perturbations at the binding site. 

For the HSP complexes (Figure 8b), the RMSF patterns of HSP+3a, HSP+4a, and HSP+4c were largely 

consistent. A notable exception occurred in the HSP+4c system, where residue 97 exhibited elevated fluctuation. 

Importantly, this residue is located outside the ligand-binding cavity and therefore does not impact the stability of 

the bound ligand. 

 

  

a) b) 

Figure 8. Root mean square fluctuation (RMSF) profiles, expressed as B-factors, for each residue across the 

simulated complexes. Panel A shows the RMSF data for the p53 protein in complex with ligands 1b (red 

trace) and 2a (black trace). Panel B displays the corresponding RMSF values for the HSP complexes with 

ligands 3a (pink), 4a (brown), and 4c (green). 

 

Binding free energy estimates were obtained through MMGBSA calculations using the cpptraj module on the 

simulation trajectories of all five complexes. For the p53+1b and p53+2a systems, analysis began at frame 6000 
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with sampling every five frames. For the HSP+3a, HSP+4a, and HSP+4c complexes, processing started at frame 

4000, also with five-frame intervals. Frame selection for each complex was guided by autocorrelation analysis to 

ensure statistically independent snapshots. 

The MMGBSA-derived energy profiles revealed differences between the p53 complexes, with p53+1b initially 

exhibiting more favorable binding free energies compared to p53+2a. However, toward the end of the simulation, 

the values for both systems converged to similar levels, as illustrated in Figure 9a. Overall, both ligands 

demonstrated thermodynamically favorable interactions with the p53 receptor. Statistical comparison via t-tests 

confirmed significant differences in binding energies between the two complexes. 

For the HSP complexes, MMGBSA results indicated sustained thermodynamically favorable binding energies 

throughout the simulations, supporting effective targeting of the HSP protein. One-way ANOVA revealed that 

the binding free energy for ligand 3a was significantly different from those of 4a and 4c, whereas no significant 

difference was observed between 4a and 4c (Figure 9b). 

A summary of the MMGBSA binding free energy values across all complexes is depicted as box-and-whisker 

plots in Figure 10. 

 

  

a) b) 

Figure 9. Time-series profiles of MMGBSA-derived binding free energies across the simulation trajectories. 

Panel A displays the energy values for the p53 protein complexes with ligands 1b (red trace) and 2a (black 

trace). Panel B shows the corresponding MMGBSA energy profiles for the HSP complexes with ligands 3a 

(pink), 4a (brown), and 4c (green). 

 

 

Figure 10. Box-and-whisker plots summarizing the MMGBSA binding free energy distributions for the p53 

(pink) and HSPCB (yellow) complexes. The datasets correspond to Compound 1 (1b), Compound 2 (2a), 

Compound 3 (3a), Compound 4 (4a), and Compound 5 (4c). 

 

The phytochemical constituents (PCs) identified in the root (NR) and stem (NS) n-hexane extracts, as well as the 

methanolic extracts (MR and MS) of P. nepalensis via gas chromatography-mass spectrometry (GC-MS), were 
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systematically evaluated in this investigation. Induced genes and their encoded proteins were pinpointed as 

prospective therapeutic targets through gene enrichment analysis, construction of protein–protein interaction (PPI) 

networks, molecular docking, molecular dynamics simulations (MDS), and MMGBSA binding free energy 

computations. 

From the 764 genes induced by the PCs (detailed in Text S1–S4), predictions were generated using DIGEP-Pred 

with a probability of activity (Pa) threshold exceeding 0.8. Functional enrichment analysis was subsequently 

applied to annotate these genes in terms of gene ontology descriptors (biological processes, molecular functions, 

cellular components), associated pathways, diseases, and marketed drugs. Each extract's gene list was inputted 

into StringDB to generate PPI networks. 

PPI networks delineate the encoded proteins from these genes, their functional roles, and interconnectivities, 

where nodes represent proteins and edges denote interactions. The topological properties of the most highly 

connected genes within these networks are tabulated in Table 2. For the MR-extract-induced genes, HSPCB and 

NFKB1 exhibited degree centrality (DC) values of 15, which were lower than those of TP53 in the networks 

derived from the other extracts. Three proteins displayed average shortest path lengths ranging from 1.75 to 3.02, 

signifying closer interconnectivity among their associated nodes relative to the broader gene set. The clustering 

coefficient (CC) for TP53 was modestly lower than for HSPCB and NFKB1. Closeness centrality (C. cen) values 

for TP53 (0.53, 0.42, and 0.57) diverged slightly from those of HSPCB and NFKB1 (0.33 and 0.34). TP53 

possessed the highest betweenness centrality (BC) values (0.56, 0.58, and 0.59), surpassing HSPCB and NFKB1 

(0.18 and 0.33). These metrics underscore the pivotal network positions of these three genes, rendering them high-

priority targets. Consequently, TP53, HSPCB, and NFKB1 were selected as promising therapeutic targets for the 

PCs derived from P. nepalensis. 

HSPCB encodes a member of the heat shock protein 90 family, functioning as a pseudogene ortholog of heat 

shock protein 90 kDa protein 1 beta. It plays critical roles in signal transduction, gastric apoptosis, protein folding, 

and inflammatory responses. Prior research has implicated HSPCB as a viable target in cancer cell lines, including 

breast cancer [26] and ovarian cancer tissues [27]. 

Nuclear factor kappa B subunit 1 (NFKB1), a nuclear transcription regulator, translocates into the nucleus upon 

stimulation by cytokines or oxidative free radicals to drive gene transcription [28]. Dysregulated NFKB1 

activation is associated with multiple inflammatory disorders, while its sustained suppression impairs immune 

cell maturation and proliferation [29]. NFKB1 serves as a key therapeutic target in diabetic cardiomyopathy [30], 

and its inhibition attenuates pro-inflammatory signaling in relevant pathways [31, 32]. Antagonists targeting 

NFKB1 can profoundly alter core gene expression profiles in leukemogenesis [33]. 

Transcription of the TP53 gene yields the p53 tumor suppressor protein, which governs cell cycle progression to 

prevent uncontrolled division [34]. p53 is extensively recognized for its tumor-suppressive functions and is a 

validated target across diverse malignancies due to its involvement in early oncogenic events [35]. Current 

inhibitors, such as piperidinone derivatives, spirooxindoles, nutlins, and isoquinolinones, target the p53-MDM2 

interaction [36] Ongoing efforts focus on developing small-molecule ligands to reactivate mutant p53 and reinstate 

its anti-tumor efficacy [37]. 

Aligning with these established findings and the results of the present work, the PCs from P. nepalensis 

demonstrate therapeutic potential through specific binding to these validated targets. Molecular docking analyses 

(Table 3) identified PCs 1b and 2a as exhibiting superior binding affinities to p53, while 3a, 4a, and 4c 

preferentially bound HSPCB. The predominant interactions in both p53 and HSPCB complexes were hydrophobic 

in nature. Strategic incorporation of functional groups capable of forming hydrogen bonds could further enhance 

binding potency. MDS trajectories, as evidenced by RMSD profiles in Figure 7 and RMSF in Figure 8, confirmed 

complex stability with deviations confined to 2–3 Å and no excessive fluctuations. MMGBSA free energy profiles 

in Figure 9 affirmed persistent thermodynamic favorability for HSPCB targeting across the full simulation 

timeframe. 

Conclusion 

P. nepalensis has long been valued for its medicinal properties, largely due to bioactive phytochemical constituents 

(PCs) characterized in earlier work. The current study identified 764 genes modulated by these compounds. 

Detailed examination of protein–protein interaction networks highlighted three key therapeutic targets: TP53, 

influenced by compounds from MS, NR, and NS extracts, and HSPCB and NFKB1, linked to the MR extract. 
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Strong binding was observed for compounds 1b (from MR) and 2a (from MS) with p53 protein, achieving docking 

scores of −8.6 and −8.0 kcal/mol, respectively. Compounds 3a (NR), 4a, and 4c (NS) demonstrated robust 

affinities to HSP with scores of −9.6, −8.7, and −8.2 kcal/mol. Molecular dynamics simulations and MMGBSA 

calculations confirmed the structural stability of these complexes, with minimal deviations and 

thermodynamically favorable binding free energies. 

Given the established roles of TP53, HSPCB, and NFKB1 in multiple malignancies, these findings highlight the 

capacity of P. nepalensis-derived PCs to modulate cancer-related genes and proteins. This work provides a solid 

foundation for future investigations into their therapeutic potential. 
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