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ABSTRACT 

The goal of this study was to construct a machine-learning framework to forecast patient response to radioiodine 

(131I) treatment and thyrotropin (TSH) suppression treatment in individuals with differentiated thyroid cancer 

(DTC) lacking structural evidence of disease, using only data available before treatment. In total, 597 patients 

were randomly selected for the training set to predict response to 131I therapy, while 326 were assigned for 

predicting response to TSH suppression therapy, all with DTC and no structural disease. Six different supervised 

machine-learning techniques were applied: Logistic Regression, Support Vector Machine, Random Forest (RF), 

Neural Networks, Adaptive Boosting, and Gradient Boost. These models were trained to identify effective 

response (ER) to 131I therapy and biochemical remission (BR) to TSH suppression therapy.  The key predictors 

of ER to 131I therapy were pre-treatment stimulated and suppressed thyroglobulin (Tg) values as well as 

radioiodine uptake before the ongoing 131I course. For Tg reduction during TSH suppression therapy, the main 

contributors were visible thyroid remnant on the post-treatment whole-body scan from the previous 131I course 

and TSH values. Random Forest (RF) outperformed the other algorithms. Using RF, the accuracy and area under 

the receiver operating characteristic curve (AUC) for differentiating ER from non-ER in 131I therapy reached 

81.3% and 0.896, respectively. For forecasting BR during TSH suppression therapy, RF achieved an accuracy of 

78.7% and an AUC of 0.857. These findings highlight the value of machine-learning approaches, particularly the 

Random Forest algorithm, as effective instruments for anticipating response to 131I therapy and TSH suppression 

therapy in DTC patients without structural disease, drawing solely on standard pre-treatment clinical parameters 

and laboratory indicators.  
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Introduction 

Differentiated thyroid cancer (DTC) constitutes the majority of thyroid malignancies, representing roughly 90% 

of cases [1]. With the rise in routine medical check-ups, most DTC diagnoses now occur early, commonly showing 

no imaging signs of ongoing disease after complete thyroid removal [2]. Typical management includes surgery, 

radioiodine (131I) therapy, and TSH suppression therapy. The purpose of post-operative 131I therapy is to 

eliminate any remaining normal thyroid tissue and to address possible undetected residual cancer or biochemical 

signs of persistence [3,  4]. Patients require levothyroxine (LT4) both to replace missing thyroid hormone and to 

prevent tumor progression [5]. American Thyroid Association (ATA) guidelines recommend a risk-adapted 

strategy for TSH suppression to balance benefits against risks of over-suppression [6].   

Monitoring thyroglobulin (Tg) is standard for evaluating therapy success and detecting potential recurrence or 

spread after thyroidectomy and 131I treatment [7-10]. Both stimulated (Tgoff) and suppressed (Tgon) Tg 

measurements are vital for overseeing DTC patients without visible structural disease [11]. Low post-ablation Tg 

suggests no remaining active cancer, permitting longer follow-up intervals of 12-24 months [3]. In contrast, 
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persistently high or increasing Tg may prompt further investigations, and even without structural findings, 

additional treatment could be considered to lower recurrence risk [12]. Reaching the lowest Tg level allows 

downward adjustment of recurrence risk and possible re-stratification to very low risk [13].   

While 131I therapy and TSH suppression are both viewed as useful for keeping Tg under control in DTC patients 

without structural disease [14,  15], the degree of Tg reduction they produce remains debated [3,  16,  17]. Selecting 

patients who will truly benefit from these interventions is therefore essential. Earlier research identified predictors 

of response mainly via standard univariate and multivariate statistics, but these methods struggle with intricate 

inter-variable relationships [18], limiting pre-treatment prediction accuracy until now.   

Machine-learning methods excel at discovering hidden patterns in historical data and handling complicated 

interactions among many variables [19]. Such models can reveal deeper connections between predictors and 

outcomes, especially with interacting factors. We thus examined a substantial group of DTC patients without 

structural disease who received 131I therapy, followed by TSH suppression and extended follow-up at one 

institution. Our aim was to build and assess an artificial intelligence tool to anticipate response to 131I therapy 

and subsequent TSH suppression therapy, incorporating routinely gathered pre-treatment variables linked to 

treatment success to support clinical decisions. 

Materials and Methods  

Study populations   

This retrospective study included adult patients (>18 years) with differentiated thyroid cancer (DTC) and no 

structural disease who had total or near-total thyroidectomy plus cervical lymph node dissection at our center 

between January 2011 and December 2020. Eligible participants met these conditions: (1) completion of at least 

one 131I treatment cycle; (2) availability of pre-current-cycle tests including TSH, Tg, TgAb, RAIU%, neck 

ultrasound, and chest CT, plus repeat assessments 4-6 months and 12-14 months after the prior cycle. Cases were 

excluded if patients (1) already had undetectable suppressed Tg (Tgon < 0.2 ng/mL) pre-therapy, (2) developed 

lymph node or distant metastases within 6 months post-therapy, or (3) lacked complete follow-up records. Ethical 

approval was granted by the Ethics Committee of the First Hospital of Jilin University.   

Every 131I treatment cycle consisted of oral dosing with 1.85-3.70 GBq (50-100 mCi). A post-therapy whole-

body scan (Rx-WBS) using SPECT/CT was obtained three days later. Levothyroxine (LT4) dose modifications, 

when required, occurred 1-6 months after treatment. Response evaluation for 131I therapy took place 4-6 months 

following the final cycle.   

Candidate predictors of 131I therapy response comprised: age, gender, histologic type, TNM-T, TNM-N, stage, 

risk category, pre-withdrawal TSH (TSHon), suppressed Tg (Tgon), pre-withdrawal TgAb (TgAbon), post-

withdrawal TSH at 4 weeks (TSHoff), stimulated Tg (Tgoff), post-withdrawal TgAb at 4 weeks (TgAboff), 

RAIU% prior to the current cycle, and previous 131I cycle count. For TSH suppression response, evaluated 

variables were: age, gender, histologic type, TNM-T, TNM-N, stage, risk category, RAIU% before the final cycle, 

total cycle count, remnant thyroid visibility on Rx-WBS after the final cycle, TSH, suppressed Tg, and TgAb 

measured 4-6 months post-final cycle (TSHsix, Tgsix, TgAbsix).   

 

Treatment response to 131i therapy   

Response classification for 131I therapy followed slightly modified ATA criteria and was performed 4-6 months 

after the last cycle (Figure 1a). Effective response (ER) required undetectable suppressed Tg (< 0.2 ng/mL). Non-

ER included detectable suppressed Tg (≥ 0.2 ng/mL) or rising pre-withdrawal TgAb.   
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b) 

Figure 1. Workflow for predicting treatment response to radioiodine (131I) therapy and thyrotropin (TSH) 

suppression therapy in differentiated thyroid cancer patients without structural disease. (a) The time point of 

treatment response assessment in 131I therapy and TSH suppression therapy. (b) Workflow for establishment 

and validation of predicting models with different algorithms. 

 

Treatment response to TSH suppression therapy  

Response to TSH suppression was quantified via the percentage change in suppressed Tg (△Tgon%), comparing 

levels at 6 months (pre-suppression) versus 12-14 months (post-suppression) after the last 131I cycle (Figure 1a). 

The formula used was: (pre-suppression Tgon − post-suppression Tgon) / pre-suppression Tgon × 100%. 

Biochemical remission (BR) was assigned when △Tgon% ≥ 25.0% (indicating ≥25.0% Tg drop), while non-BR 

applied when △Tgon% < 25.0% (covering any Tg rise or drop <25.0%).   

 

Establishment and evaluation of machine learning algorithms   

The study process is outlined in Figure 1b. Predictive modeling was patient-specific. Enrolled cases were 

repeatedly randomized (10-fold cross-validation) into training (70%) and testing (30%) sets. Initial screening 

compared groups using Wilcoxon tests for continuous data and Chi-square/Fisher’s exact tests for categorical 

data. Significant variables (P < .05) then underwent feature reduction by LASSO regression with 10-fold cross-

validation. Selected features fed into model training using six algorithms: Logistic Regression (LG), Support 

Vector Machine (SVM), Random Forest (RF), Neural Networks (NN), Adaptive Boosting (ADA), and Gradient 

Boost (GB).   

Feature importance and directional effects were interpreted via SHapley Additive exPlanations (SHAP) summary 

plots. For 131I response, “0” coded ER and “1” coded non-ER; higher positive SHAP scores raised non-ER 

probability, lower negative scores favored ER. For TSH suppression, “0” coded BR and “1” coded non-BR; 

positive SHAP increased non-BR likelihood, negative SHAP favored BR. These plots visually ranked influential 

predictors and clarified their impact on outputs.   

All models were benchmarked primarily through receiver operating characteristic (ROC) curves and area under 

the curve (AUC) values derived from the testing set. 

Results and Discussion 

Patient characteristics for predicting treatment response to 131I Therapy   

For the training set, 843 patients without structural disease were initially considered. After removing 246 

individuals (89 due to undetectable Tgon, 56 who showed structural disease within 6 months post-131I therapy, 

and 101 owing to incomplete follow-up), 70.8% (597/843) qualified for inclusion. The testing set started with 339 

patients without structural disease. Following removal of 82 cases (32 with undetectable Tgon, 8 who developed 

structural disease within 6 months after therapy, and 42 with missing follow-up data), 75.8% (257/339) were 

retained. Table 1 confirms that no variables differed significantly between the training and testing groups.   
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Table 1. Baseline characteristics of differentiated thyroid cancer patients without structural disease in the 

training and testing cohorts for prediction of treatment response to 131I therapy (N = 854). 

Feature Testing Group (n = 257) Training Group (n = 597) P-value 

Gender   .25 

Female 173 (67.3%) 426 (71.4%)  

Male 84 (32.7%) 171 (28.6%)  

Age, median (years) 43 (IQR, 33~53) 45 (IQR, 36~54) .12 

Histology   1.00 

Papillary thyroid carcinoma 253 (98.4%) 586 (98.2%)  

Follicular thyroid carcinoma 4 (1.6%) 11 (1.8%)  

TNM-T stage   .55 

T1 167 (65.0%) 397 (66.5%)  

T2 52 (20.3%) 98 (16.4%)  

T3 24 (9.3%) 66 (11.1%)  

T4 14 (5.4%) 36 (6.0%)  

TNM-N stage   .16 

N0 14 (5.4%) 48 (8.1%)  

N1a 108 (42.0%) 215 (36.0%)  

N1b 135 (52.6%) 334 (55.9%)  

Clinical stage   .78 

I 208 (80.9%) 471 (78.9%)  

II 48 (18.7%) 122 (20.4%)  

III 1 (0.4%) 4 (0.7%)  

IV 0 (0%) 0 (0%)  

Risk category   .87 

Low 25 (9.7%) 60 (10.1%)  

Intermediate 206 (80.2%) 483 (80.9%)  

High 26 (10.1%) 54 (9.0%)  

RAIU%, median 6.0 (IQR, 3.7-8.5) 6.5 (IQR, 4.2~8.6) .12 

TSHon, median (mIU/L) 0.25 (IQR, 0.07-0.68) 0.32 (IQR, 0.08-0.75) .16 

Tgon, median (ng/mL) 2.61 (IQR, 1.46-4.65) 2.68 (IQR, 1.52-5.43) .25 

TgAbon, median (IU/mL) 11.20 (IQR, 10.00-15.92) 11.70 (IQR, 10.00-17.09) .42 

TSHoff, median (mIU/L) 100.00 (IQR, 95.40-100.00) 100.00 (IQR, 95.20-100.00) .23 

Tgoff, median (ng/mL) 21.39 (IQR, 14.07-36.24) 22.09 (IQR, 15.37-36.75) .18 

TgAboff, median (IU/mL) 12.00 (IQR, 10.00-16.92) 11.87 (IQR, 10.00-17.80) .94 

Number of 131I courses   .94 

0 178 (69.3%) 411 (68.8%)  

≥1 79 (30.7%) 186 (31.2%)  

Abbreviations: PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; TSHon, thyroid-stimulating hormone before Levothyroxine 

withdrawal; Tgon, suppressed thyroglobulin; TgAbon, antithyroglobulin antibody before Levothyroxine withdrawal; TSHoff, thyroid-

stimulating hormone after Levothyroxine withdrawal; Tgoff, stimulated thyroglobulin; TgAboff, antithyroglobulin antibody after 

Levothyroxine withdrawal; IQR, interquartile range; RAIU, radioiodine uptake.   

 

Predicting treatment response to 131I Therapy   

Within the training group, 45.2% (270/597) of cases attained ER following 131I therapy, compared to 54.8% 

(327/597) exhibiting non-ER (Table 2). Corresponding figures in the testing group were 45.5% (117/257) for ER 

and 54.5% (140/257) for non-ER.   

 

Table 2. Comparison of clinical characteristics of differentiated thyroid cancer patients without structural 

disease who obtained ER or non-ER to 131I therapy in the training and testing cohorts (N = 854). 

Feature Testing Group   Training Group   

 ER (n = 117) 
Non-ER (n = 

140) 

P-

value 
ER (n = 270) 

Non-ER (n = 

327) 

P-

value 

Gender   .18   .03 

Female 84 (71.8%) 89 (63.6%)  205 (75.9%) 221 (67.6%)  

Male 33 (28.2%) 51 (36.4%)  65 (24.1%) 106 (32.4%)  
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Age, median (years) 44 (IQR, 35-55) 42 (IQR, 32-52) .07 45 (IQR, 36-53) 45 (IQR, 36-54) .69 

Histology   .13   1.00 

Papillary thyroid 

carcinoma 
117 (100.0%) 136 (97.1%)  265 (98.1%) 321 (98.2%)  

Follicular thyroid 

carcinoma 
0 (0.0%) 4 (2.9%)  5 (1.9%) 6 (1.8%)  

TNM-T stage   .64   .69 

T1 77 (65.8%) 90 (64.3%)  184 (68.1%) 213 (65.1%)  

T2 25 (21.4%) 27 (19.3%)  39 (14.4%) 59 (18.0%)  

T3 8 (6.8%) 16 (11.4%)  30 (11.1%) 36 (11.0%)  

T4 7 (6.0%) 7 (5.0%)  17 (6.3%) 19 (5.8%)  

TNM-N stage   .46   .01 

N0 8 (6.8%) 6 (4.3%)  24 (8.9%) 24 (7.3%)  

N1a 52 (44.4%) 56 (40.0%)  116 (43.0%) 99 (30.3%)  

N1b 57 (48.8%) 78 (55.7%)  130 (48.1%) 204 (62.4%)  

Clinical stage   .09   .69 

I 89 (76.0%) 119 (85.0%)  216 (80.0%) 255 (78.0%)  

II 27 (23.1%) 21 (15.0%)  53 (19.6%) 69 (21.1%)  

III 1 (0.9%) 0 (0%)  1 (0.4%) 3 (0.9%)  

IV 0 (0%) 0 (0%)  0 (0%) 0 (0%)  

Risk category   .01   .01 

Low 16 (13.6%) 9 (6.4%)  36 (13.3%) 24 (7.3%)  

Intermediate 96 (82.1%) 110 (78.6%)  224 (83.0%) 259 (79.2%)  

High 5 (4.3%) 21 (15.0%)  10 (3.7%) 44 (13.5%)  

RAIU%, median 
5.9 (IQR, 3.8-

8.4) 

6.0 (IQR, 3.7-

8.7) 
.96 

6.9 (IQR, 4.9-

8.7) 

6.1 (IQR, 3.5-

8.5) 
.01 

TSHon, median 

(mIU/L) 

0.22 (IQR, 0.07-

0.57) 

0.28 (IQR, 0.08-

0.71) 
.14 

0.39 (IQR, 0.09-

0.83) 

0.27 (IQR, 0.07-

0.70) 
.03 

Tgon, median 

(ng/mL) 

1.43 (IQR, 1.16-

2.23) 

4.32 (IQR, 2.51-

6.51) 
.01 

1.60 (IQR, 1.24-

2.44) 

4.39 (IQR, 2.52-

7.07) 
.01 

TgAbon, median 

(IU/mL) 

11.6 (IQR, 

10.00-16.09) 

10.71 (IQR, 

10.00-15.65) 
.13 

11.62 (IQR, 

10.00-17.31) 

11.73 (IQR, 

10.00-17.05) 
.87 

TSHoff, median 

(mIU/L) 

100.00 (IQR, 

92.70-100.00) 

100.00 (IQR, 

96.66-100.00) 
.58 

100.00 (IQR, 

97.70-100.00) 

100.00 (IQR, 

88.10-100.00) 
.13 

Tgoff, median 

(ng/mL) 

15.10 (IQR, 

11.97-19.67) 

31.89 (IQR, 

20.29-42.98) 
.01 

16.37 (IQR, 

12.00-22.60) 

30.83 (IQR, 

21.00-47.00) 
.01 

TgAboff, median 

(IU/mL) 

11.50 (IQR, 

10.00-15.69) 

12.70 (IQR, 

10.00-17.39) 
.14 

11.43 (IQR, 

10.00-16.70) 

12.00 (IQR, 

10.00-18.20) 
.27 

Number of 131I 

courses 
  .01   .01 

0 96 (82.1%) 82 (58.6%)  221 (81.9%) 190 (58.1%)  

≥1 21 (17.9%) 58 (41.4%)  49 (18.1%) 137 (41.9%)  

Abbreviations: ER, excellent response; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; TSHon, thyroid-stimulating hormone 

before Levothyroxine withdrawal; Tgon, suppressed thyroglobulin; TgAbon, antithyroglobulin antibody before Levothyroxine withdrawal; 

TSHoff, thyroid-stimulating hormone after Levothyroxine withdrawal; Tgoff, stimulated thyroglobulin; TgAboff, antithyroglobulin antibody 

after Levothyroxine withdrawal; IQR, interquartile range; RAIU, radioiodine uptake.   

 

Variables displayed minimal multicollinearity, as indicated in Figure 2a. After screening and LASSO processing, 

key features distinguishing patients with and without ER included sex, TNM-N, risk stratification, RAIU%, Tgon, 

TSHoff, Tgoff, and the count of previous 131I courses. These emerged as top indicators for the risk of non-ER, 

depicted in Figures 2b and 2c.   
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a) b) 

 

 
c) d) 

Figure 2. Development and validation of a machine learning model to predict treatment response to 

radioiodine (131I) therapy in patients with differentiated thyroid cancer without structural disease. (a) 

Correlation analysis among the factors included in the study that are linked to 131I therapy. (b) Application 

of the least absolute shrinkage and selection operator (LASSO) to identify the most influential factors 

associated with treatment response to 131I therapy. (c) Determination of the optimal λ corresponding to the 

lowest mean square error for selecting features. (d) Receiver operating characteristic curve (ROC) analysis 

showing the area under the curve (AUC) for predicting treatment response. 

 

During model training, LG, SVM, RF, NN, ADA, and GB algorithms were employed, and their predictive 

performance was evaluated using AUC in the testing cohort. The findings indicated that all algorithms achieved 

similar predictive capabilities for treatment response to 131I therapy, with RF showing the highest accuracy of 

81.3% and an AUC of 0.896, as presented in Figure 2d. 

The impact of each influential factor within RF was assessed using SHAP analysis, shown in Figure 3a. Higher 

values of TNM-N, risk stratification, Tgon, and Tgoff prior to the current course of 131I therapy were linked to 

non-ER outcomes. Among these, Tgon and Tgoff before the current course emerged as the top two factors with 

the greatest influence on RF’s prediction of 131I therapy response, as illustrated in Figure 3b. Furthermore, 10 

RF ensembles, each containing 500 trees, were trained using the identified influential factors. The selection 

frequency of each factor at the root and at levels one to three of the trees in the ensembles was calculated to 

determine their relative importance. Node-splitting cutoff thresholds were chosen to maximize impurity reduction 

across all candidate splits [20]. One example of an RF ensemble is shown in Figure 3c. Predictions for a random 

sample of patients indicated ER to 131I therapy using this RF ensemble, as presented in Figure 5d. These 

predictions were consistent with final follow-up results, confirming the model’s ability to accurately predict 

treatment response to 131I therapy. 
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a) b) 

 
c) 

 
d) 

Figure 3. Random forest (RF) setup to forecast radioiodine (131I) outcomes among differentiated thyroid 

cancer cases lacking visible lesions. (a) SHAP overview of top variables' effects. (b) Linkage of off/on 

thyroglobulin states within RF framework. (c) Example tree cluster from RF aimed at 131I outcome calls. (d) 

Case study: RF applied to one patient's 131I response forecast. 

 

Baseline data for TSH suppression outcome forecasts   

Four to six months after final 131I ablation, Tgon exceeded 0.2 ng/mL in 54.6% (326/597) training cases and 

54.8% (141/257) validation cases. Table 3 lists traits for TSH suppression modeling groups; only prior 131I 

rounds varied notably between sets.   

 

Table 3. Core traits among differentiated thyroid cancer cases without lesions in training/validation groups for 

TSH suppression response modeling (N = 467). 

Characteristic 
Testing cohort (n = 

141) 

Training cohort (n = 

326) 
P-value 

Sex  .75  
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Female 92 (65.2%) 218 (66.9%)  

Male 49 (34.8%) 108 (33.1%)  

Age, median (years) 45 (IQR, 35–54) 43 (IQR, 35–53) .41 

Pathology  .18  

PTC 136 (96.5%) 321 (98.5%)  

FTC 5 (3.5%) 5 (1.5%)  

Tumor  .55  

T1 95 (67.4%) 208 (63.8%)  

T2 21 (14.9%) 65 (19.9%)  

T3 18 (12.8%) 34 (10.4%)  

T4 7 (4.9%) 19 (5.8%)  

Lymph node  .76  

N0 8 (5.7%) 22 (6.7%)  

N1a 44 (31.2%) 111 (34.0%)  

N1b 89 (63.1%) 193 (59.3%)  

Stage  .79  

I 114 (80.9%) 260 (79.8%)  

II 27 (19.1%) 63 (19.3%)  

III 0 (0%) 3 (0.9%)  

IV 0 (0%) 0 (0%)  

Risk stratification  .90  

Low 11 (7.8%) 22 (6.7%)  

Mediate 111 (78.7%) 258 (79.1%)  

High 19 (13.5%) 46 (14.1%)  

RAIU%, median 6.0 (IQR, 3.7–8.5) 6.1 (IQR, 3.5–8.5) .80 

Courses of 131I therapy  .08  

1 91 (64.5%) 181 (55.5%)  

>1 50 (35.5%) 145 (44.5%)  

TSHsix, median (mIU/L) 0.08 (IQR, 0.06–0.23) 0.12 (IQR, 0.06–0.27) .46 

Tgsix, median (ng/mL) 0.79 (IQR, 0.45–1.86) 1.08 (IQR, 0.51–1.97) .16 

TgAbsix, median (IU/mL) 
12.00 (IQR, 10.00–

18.00) 

12.85 (IQR, 10.00–

21.00) 
.45 

Thyroid remnant on Rx-WBS of the last course of 

therapy 
 .24  

Yes 42 (29.8%) 117 (35.9%)  

No 99 (70.2%) 209 (64.1%)  

Key terms: TSH, thyroid-stimulating hormone; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; RAIU, radioiodine uptake; 

TSHsix, thyroid-stimulating hormone at 4-6 months after the last course of 131I therapy; Tgsix, stimulated thyroglobulin at 4-6 months after 

the last course of 131I therapy; IQR, interquartile range; Rx-WBS, post-therapeutic whole-body scan.   

 

Table 4. Trait contrasts for differentiated thyroid cancer cases without lesions achieving BR versus non-BR 

under TSH suppression across training/validation groups (N = 467). 

Characteristic Testing cohort (n = 141) 
P-

value 
Training cohort (n = 326) 

P-

value 

 BR (n = 72) 
Non-BR (n = 

69) 
 BR (n = 155) 

Non-BR (n = 

171) 
 

Sex .01   .01   

Female 60 (83.3%) 32 (46.4%)  121 (78.1%) 97 (56.7%)  

Male 12 (16.7%) 37 (53.6%)  34 (21.9%) 74 (43.3%)  

Age, median (years) 
46 (IQR, 38–

55) 

42 (IQR, 35–

54) 
.16 

45 (IQR, 35–

54) 

43 (IQR, 34–

53) 
.38 
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Pathology 1.00   1.00   

PTC 69 (95.8%) 67 (97.1%)  153 (98.7%) 168 (98.2%)  

FTC 3 (4.2%) 2 (2.9%)  2 (1.3%) 3 (1.8%)  

Tumor stage .49   .88   

T1 45 (62.5%) 50 (72.5%)  96 (61.9%) 112 (65.5%)  

T2 11 (15.3%) 10 (14.5%)  32 (20.7%) 33 (19.3%)  

T3 12 (16.7%) 6 (8.7%)  18 (11.6%) 16 (9.4%)  

T4 4 (5.5%) 3 (4.3%)  9 (5.8%) 10 (5.8%)  

Lymph node status .01   .22   

N0 8 (11.1%) 0 (0%)  9 (5.8%) 13 (7.6%)  

N1a 26 (36.1%) 18 (26.1%)  60 (38.7%) 51 (29.8%)  

N1b 38 (52.8%) 51 (73.9%)  86 (55.5%) 107 (62.6%)  

Overall stage .83   .52   

I 59 (81.9%) 55 (79.7%)  120 (77.4%) 140 (81.9%)  

II 13 (18.1%) 14 (20.3%)  33 (21.3%) 30 (17.5%)  

III 0 (0%) 0 (0%)  2 (1.3%) 1 (0.6%)  

IV 0 (0%) 0 (0%)  0 (0%) 0 (0%)  

Risk group .01   .01   

Low 10 (13.8%) 1 (1.4%)  10 (6.5%) 12 (7.0%)  

Intermediate 57 (79.2%) 54 (78.3%)  133 (85.8%) 125 (73.1%)  

High 5 (7.0%) 14 (20.3%)  12 (7.7%) 34 (19.9%)  

RAIU%, median 
5.5 (IQR, 3.7–

8.6) 

6.2 (IQR, 3.7–

8.4) 
.88 

6.0 (IQR, 4.0–

8.3) 

6.2 (IQR, 3.2–

8.9) 
.78 

Number of 131I therapy 

courses 
     .01 

1 course 58 (80.6%) 33 (47.8%)  115 (74.2%) 66 (38.6%)  

>1 course 14 (19.4%) 36 (52.2%)  40 (25.8%) 105 (61.4%)  

TSHsix, median (mIU/L) 
0.13 (IQR, 

0.07–0.33) 

0.08 (IQR, 

0.06–0.163) 
.03 

0.15 (IQR, 

0.06–0.4) 

0.08 (IQR, 

0.06–0.21) 
.01 

Tgsix, median (ng/mL) 
0.36 (IQR, 

0.35–1.07) 

1.47 (IQR, 

0.62–3.57) 
.01 

0.65 (IQR, 

0.38–1.34) 

1.65 (IQR, 

0.76–2.65) 
.01 

TgAbsix, median (IU/mL) 
12.25 (IQR, 

10.00–20.33) 

12.00 (IQR, 

10.00–18.00) 
.71 

14.00 (IQR, 

10.00–23.00) 

12.00 (IQR, 

10.00–16.80) 
.36 

Thyroid remnant on Rx-

WBS in last 131I course 
.01   .01   

Yes 58 (80.6%) 33 (47.8%)  16 (10.3%) 101 (59.1%)  

No 14 (19.4%) 36 (52.2%)  139 (89.7%) 70 (40.9%)  

Key terms: TSH, thyroid-stimulating hormone; BR, biochemical remission; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; 

RAIU, radioiodine uptake; TSHsix, thyroid-stimulating hormone at 4-6 months after the last course of 131I therapy; Tgsix, stimulated 

thyroglobulin at 4-6 months after the last course of 131I therapy; TgAbsix, antithyroglobulin antibody at 4-6 months after the last course of 

131I therapy; IQR, interquartile range; Rx-WBS, post-therapeutic whole-body scan.   

 

Forecasting TSH suppression outcomes   

Table 4 reports ∆Tgon% shifts spanning 6 to 12-24 months post-final 131I: training saw 47.5% (155/326) hit BR 

thresholds against 52.5% (171/326) non-BR, while validation logged 51.1% (72/141) BR and 48.9% (69/141) 

non-BR.   

Factors showed weak interlinks (Figure 4a). Univariate checks flagged sex, risk group, pre-final-131I RAIU%, 

TSHsix, Tgsix, 131I round totals, plus remnant uptake on last Rx-WBS as BR differentiators. Cross-validated 

LASSO pruned to sex, risk group, TSHsix, Tgsix, 131I totals, and last Rx-WBS remnant as prime non-BR signals 

(Figures 4b-4c). 
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a) b) 

 

 
c) d) 

Figure 4. Machine learning pipeline build/test for thyrotropin (TSH) suppression response in differentiated 

thyroid cancer without lesions. (a) Variable interlinks tied to TSH suppression. (b) LASSO tuning of top 

response drivers for TSH suppression. (c) λ sweet spot minimizing error in feature picks. (D) ROC-AUC plot 

for TSH suppression response forecasts. 

 

Training deployed LG, SVM, RF, NN, ADA, GB constructs, scored via test-set AUCs. RF topped charts at 78.7% 

accuracy, 0.857 AUC (Figure 4d). 

Figure 5a displays the impact of key variables on the Random Forest model via SHAP interpretation. Presence 

of thyroid remnant on the post-therapy whole-body scan from the final 131I cycle, along with elevated TSHsix 

values, showed a strong positive link to achieving BR under TSH suppression therapy. These two elements ranked 

as the top contributors driving RF forecasts for TSH suppression outcomes, as depicted in Figure 5b. An 

illustrative tree from one RF ensemble appears in Figure 5c. Application of this ensemble to a randomly chosen 

case correctly forecasted BR for TSH suppression therapy, presented in Figure 5d. The forecast aligned precisely 

with long-term clinical results, confirming the model's robustness for anticipating TSH suppression response. 

 

 

 
a) b) 
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c) 

 
d) 

Figure 5. Random forest (RF) framework designed to forecast thyrotropin (TSH) suppression outcomes in 

differentiated thyroid cancer cases lacking visible lesions. (a) SHAP overview highlighting effects of top 

variables. (b) Relationship of TSH levels and remnant thyroid visibility on post-therapy scans within RF. (c) 

Sample tree structure from RF ensemble targeting TSH suppression response calls. (d) Example case: RF 

deployment for one patient's TSH suppression outcome projection. 

 

As far as we are aware, this represents the initial effort to create machine learning systems capable of forecasting 

responses to both 131I therapy and TSH suppression therapy. Multiple predictive frameworks were developed to 

identify individuals likely to gain from these interventions, relying solely on baseline clinical data and laboratory 

indicators across a substantial patient group. Random Forest emerged as the superior performer. The resulting 

tools delivered strong classification precision for ER under 131I therapy and BR under TSH suppression, offering 

valuable support for clinical decision-making. 

Clinical application of 131I therapy spans eight decades [21]. Historically, treatment protocols have drawn on 

elements like surgical pathology details, radioiodine imaging findings, plus TSH and Tg measurements [22,  23]. 

In the current analysis, predictors of 131I response included sex, risk category, TNM-N stage, RAIU%, Tgon, 

Tgoff, TSHoff, and prior 131I cycle count. Males exhibited superior Tg reduction, aligning with earlier reports 

linking elevated estrogen to increased Tg expression—possibly through enhanced release of mutagenic agents in 

thyroid tissue and promotion of tumor growth [24]. Risk stratification displayed a modest inverse tie with ER 

likelihood; while 131I is typically advised for higher-risk cases [25], such patients proved harder to reach ER, 

implying need for alternative approaches to Tg control. Residual thyroid tissue remains the primary driver of 

persistent high Tg post-thyroidectomy. Pre-therapy RAIU% assesses remnant activity [26], and detectable pre-

cycle Tg signals ongoing remnant or biochemical persistence, aiding therapy planning [12]. Prior work by Li et 

al. tied Tgoff closely to ER after first 131I administration, identifying a cutoff of 6.915 μg/L yielding 69.2% 

sensitivity and 89.4% specificity [27]. Our results similarly underscored major roles for RAIU% and Tg in ER 

projection. Most cases retained 131I uptake in the thyroid bed or thyroglossal remnants on post-therapy scans, 

particularly post-initial cycle. Tg declines grew evident with additional cycles, supporting the value of repeat 131I 

administrations for response attainment. 
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Cases showing elevated Tg alongside negative Rx-WBS often warrant further investigation and potential adjunct 

interventions [3,  12,  28]. Notably, among those with non-avid lesions post-current cycle, Tgon fell below 0.2 

ng/mL after extra 131I rounds in 26.3% (49/186) training cases and 26.6% (21/79) testing cases. This reinforces 

high Tg as a marker prompting adjuvant measures to lower levels and streamline staging plus monitoring [28, 

29]. 

TSH suppression therapy serves as a key strategy following thyroidectomy and 131I treatment in thyroid cancer 

management. It inhibits thyroid cancer cell proliferation and promotes Tg reduction by keeping TSH below normal 

ranges [30]. Among the variables examined here, our work provides the first robust evidence that visible thyroid 

remnant on the post-therapy whole-body scan from the final 131I cycle, combined with elevated TSHsix, reliably 

marks patients likely to gain biochemical remission from TSH suppression. Raised TSHsix typically signals 

inadequate levothyroxine dosing; with proper adjustment, Tg usually drops quickly. Individuals classified as 

intermediate- or high-risk DTC may derive limited advantage from this approach [31]. Remnant thyroid tissue 

detected on the last Rx-WBS often explains persistent Tg elevation. To minimize any lingering influence from 

prior 131I on Tg values, response evaluation compared Tgon at 6 months versus 12-24 months after the final 131I 

administration. Still, residual 131I effects at the 6-month mark cannot be fully excluded. Furthermore, nadir Tg 

achievement rates rise gradually during ongoing suppression, supporting a conservative stance—avoiding extra 

interventions in cases with stably low Tg and no structural lesions [32]. We noted Tg reductions mainly among 

those starting with modest elevations. Yet nearly half the cohort with higher baseline Tg failed to show decline. 

Potential reasons include suboptimal medication compliance or issues affecting drug absorption/metabolism [33]. 

Alternatively, prior 131I cycles might have lacked efficacy, especially in aggressive or advanced cases where 

ablation proves incomplete. Rising Tg can also signal early recurrence, warranting additional diagnostics. Certain 

basic traits, like sex, correlate with spontaneous Tg fall but fall outside ATA risk frameworks. Consistent with 

131I findings, males responded better to suppression. Nonetheless, therapy choices must remain tailored, 

balancing risks against expected gains for every individual. 

Here, we integrated selected predictors into six machine-learning frameworks—Logistic Regression (LR), 

Support Vector Classifier (SVC), Random Forest (RF), Neural Network (NN), Adaptive Boosting (ADA), and 

Gradient Boosting (GB)—to forecast responses to 131I or TSH suppression. All approaches performed similarly, 

though RF achieved top accuracy and AUC values. RF operates as an ensemble method, constructing numerous 

decision trees via bagging and random feature selection. Each tree trains on distinct data subsets using varied 

feature combinations, then aggregates outputs for the final call. This randomness enhances robustness, curbs 

overfitting, and allows capture of intricate feature-outcome interactions, driving superior precision [34,  35]. By 

incorporating routine pre-intervention clinical and laboratory data, RF effectively separates likely beneficiaries 

from non-responders ahead of treatment. 

Certain constraints apply to this work. First, the retrospective design focused on DTC cases without structural 

disease who underwent at least one 131I cycle, potentially introducing selection bias and limiting generalizability 

to untreated cohorts at our center. Second, recruitment occurred at one facility; validation across external sites 

would strengthen conclusions. Third, predictors relied solely on available pre-treatment clinical and biochemical 

elements. Key potential influencers, such as BRAF mutation status, were omitted owing to extensive missing 

records. 

Conclusion 

These results establish machine-learning approaches, particularly Random Forest, as powerful instruments for 

anticipating responses to 131I therapy and TSH suppression therapy among differentiated thyroid cancer patients 

lacking structural disease, using only standard pre-treatment clinical parameters and laboratory indicators. 
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