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ABSTRACT

The goal of this study was to construct a machine-learning framework to forecast patient response to radioiodine
(1311) treatment and thyrotropin (TSH) suppression treatment in individuals with differentiated thyroid cancer
(DTC) lacking structural evidence of disease, using only data available before treatment. In total, 597 patients
were randomly selected for the training set to predict response to 1311 therapy, while 326 were assigned for
predicting response to TSH suppression therapy, all with DTC and no structural disease. Six different supervised
machine-learning techniques were applied: Logistic Regression, Support Vector Machine, Random Forest (RF),
Neural Networks, Adaptive Boosting, and Gradient Boost. These models were trained to identify effective
response (ER) to 1311 therapy and biochemical remission (BR) to TSH suppression therapy. The key predictors
of ER to 131I therapy were pre-treatment stimulated and suppressed thyroglobulin (Tg) values as well as
radioiodine uptake before the ongoing 1311 course. For Tg reduction during TSH suppression therapy, the main
contributors were visible thyroid remnant on the post-treatment whole-body scan from the previous 1311 course
and TSH values. Random Forest (RF) outperformed the other algorithms. Using RF, the accuracy and area under
the receiver operating characteristic curve (AUC) for differentiating ER from non-ER in 1311 therapy reached
81.3% and 0.896, respectively. For forecasting BR during TSH suppression therapy, RF achieved an accuracy of
78.7% and an AUC of 0.857. These findings highlight the value of machine-learning approaches, particularly the
Random Forest algorithm, as effective instruments for anticipating response to 1311 therapy and TSH suppression
therapy in DTC patients without structural disease, drawing solely on standard pre-treatment clinical parameters
and laboratory indicators.
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Introduction

Differentiated thyroid cancer (DTC) constitutes the majority of thyroid malignancies, representing roughly 90%
of cases [ 1]. With the rise in routine medical check-ups, most DTC diagnoses now occur early, commonly showing
no imaging signs of ongoing disease after complete thyroid removal [2]. Typical management includes surgery,
radioiodine (1311) therapy, and TSH suppression therapy. The purpose of post-operative 1311 therapy is to
eliminate any remaining normal thyroid tissue and to address possible undetected residual cancer or biochemical
signs of persistence [3, 4]. Patients require levothyroxine (LT4) both to replace missing thyroid hormone and to
prevent tumor progression [5]. American Thyroid Association (ATA) guidelines recommend a risk-adapted
strategy for TSH suppression to balance benefits against risks of over-suppression [6].

Monitoring thyroglobulin (Tg) is standard for evaluating therapy success and detecting potential recurrence or
spread after thyroidectomy and 1311 treatment [7-10]. Both stimulated (Tgoff) and suppressed (Tgon) Tg
measurements are vital for overseeing DTC patients without visible structural disease [11]. Low post-ablation Tg
suggests no remaining active cancer, permitting longer follow-up intervals of 12-24 months [3]. In contrast,
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persistently high or increasing Tg may prompt further investigations, and even without structural findings,
additional treatment could be considered to lower recurrence risk [12]. Reaching the lowest Tg level allows
downward adjustment of recurrence risk and possible re-stratification to very low risk [13].

While 1311 therapy and TSH suppression are both viewed as useful for keeping Tg under control in DTC patients
without structural disease [14, 15], the degree of Tg reduction they produce remains debated [3, 16, 17]. Selecting
patients who will truly benefit from these interventions is therefore essential. Earlier research identified predictors
of response mainly via standard univariate and multivariate statistics, but these methods struggle with intricate
inter-variable relationships [18], limiting pre-treatment prediction accuracy until now.

Machine-learning methods excel at discovering hidden patterns in historical data and handling complicated
interactions among many variables [19]. Such models can reveal deeper connections between predictors and
outcomes, especially with interacting factors. We thus examined a substantial group of DTC patients without
structural disease who received 1311 therapy, followed by TSH suppression and extended follow-up at one
institution. Our aim was to build and assess an artificial intelligence tool to anticipate response to 1311 therapy
and subsequent TSH suppression therapy, incorporating routinely gathered pre-treatment variables linked to
treatment success to support clinical decisions.

Materials and Methods

Study populations

This retrospective study included adult patients (>18 years) with differentiated thyroid cancer (DTC) and no
structural disease who had total or near-total thyroidectomy plus cervical lymph node dissection at our center
between January 2011 and December 2020. Eligible participants met these conditions: (1) completion of at least
one 1311 treatment cycle; (2) availability of pre-current-cycle tests including TSH, Tg, TgAb, RAIU%, neck
ultrasound, and chest CT, plus repeat assessments 4-6 months and 12-14 months after the prior cycle. Cases were
excluded if patients (1) already had undetectable suppressed Tg (Tgon < 0.2 ng/mL) pre-therapy, (2) developed
lymph node or distant metastases within 6 months post-therapy, or (3) lacked complete follow-up records. Ethical
approval was granted by the Ethics Committee of the First Hospital of Jilin University.

Every 1311 treatment cycle consisted of oral dosing with 1.85-3.70 GBq (50-100 mCi). A post-therapy whole-
body scan (Rx-WBS) using SPECT/CT was obtained three days later. Levothyroxine (LT4) dose modifications,
when required, occurred 1-6 months after treatment. Response evaluation for 1311 therapy took place 4-6 months
following the final cycle.

Candidate predictors of 1311 therapy response comprised: age, gender, histologic type, TNM-T, TNM-N, stage,
risk category, pre-withdrawal TSH (TSHon), suppressed Tg (Tgon), pre-withdrawal TgAb (TgAbon), post-
withdrawal TSH at 4 weeks (TSHoff), stimulated Tg (Tgoff), post-withdrawal TgAb at 4 weeks (TgAboff),
RAIU% prior to the current cycle, and previous 1311 cycle count. For TSH suppression response, evaluated
variables were: age, gender, histologic type, TNM-T, TNM-N, stage, risk category, RAIU% before the final cycle,
total cycle count, remnant thyroid visibility on Rx-WBS after the final cycle, TSH, suppressed Tg, and TgAb
measured 4-6 months post-final cycle (TSHsix, Tgsix, TgAbsix).

Treatment response to 131i therapy

Response classification for 1311 therapy followed slightly modified ATA criteria and was performed 4-6 months
after the last cycle (Figure 1a). Effective response (ER) required undetectable suppressed Tg (< 0.2 ng/mL). Non-
ER included detectable suppressed Tg (= 0.2 ng/mL) or rising pre-withdrawal TgAb.
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Figure 1. Workflow for predicting treatment response to radioiodine (1311) therapy and thyrotropin (TSH)
suppression therapy in differentiated thyroid cancer patients without structural disease. (a) The time point of
treatment response assessment in 1311 therapy and TSH suppression therapy. (b) Workflow for establishment
and validation of predicting models with different algorithms.

Treatment response to TSH suppression therapy

Response to TSH suppression was quantified via the percentage change in suppressed Tg (ATgon%), comparing
levels at 6 months (pre-suppression) versus 12-14 months (post-suppression) after the last 1311 cycle (Figure 1a).
The formula used was: (pre-suppression Tgon — post-suppression Tgon) / pre-suppression Tgon x 100%.
Biochemical remission (BR) was assigned when ATgon% > 25.0% (indicating >25.0% Tg drop), while non-BR
applied when ATgon% < 25.0% (covering any Tg rise or drop <25.0%).

Establishment and evaluation of machine learning algorithms

The study process is outlined in Figure 1b. Predictive modeling was patient-specific. Enrolled cases were
repeatedly randomized (10-fold cross-validation) into training (70%) and testing (30%) sets. Initial screening
compared groups using Wilcoxon tests for continuous data and Chi-square/Fisher’s exact tests for categorical
data. Significant variables (P < .05) then underwent feature reduction by LASSO regression with 10-fold cross-
validation. Selected features fed into model training using six algorithms: Logistic Regression (LG), Support
Vector Machine (SVM), Random Forest (RF), Neural Networks (NN), Adaptive Boosting (ADA), and Gradient
Boost (GB).

Feature importance and directional effects were interpreted via SHapley Additive exPlanations (SHAP) summary
plots. For 1311 response, “0” coded ER and “1” coded non-ER; higher positive SHAP scores raised non-ER
probability, lower negative scores favored ER. For TSH suppression, “0” coded BR and “1” coded non-BR;
positive SHAP increased non-BR likelihood, negative SHAP favored BR. These plots visually ranked influential
predictors and clarified their impact on outputs.

All models were benchmarked primarily through receiver operating characteristic (ROC) curves and area under
the curve (AUC) values derived from the testing set.

Results and Discussion

Patient characteristics for predicting treatment response to 1311 Therapy

For the training set, 843 patients without structural disease were initially considered. After removing 246
individuals (89 due to undetectable Tgon, 56 who showed structural disease within 6 months post-1311I therapy,
and 101 owing to incomplete follow-up), 70.8% (597/843) qualified for inclusion. The testing set started with 339
patients without structural disease. Following removal of 82 cases (32 with undetectable Tgon, 8 who developed
structural disease within 6 months after therapy, and 42 with missing follow-up data), 75.8% (257/339) were
retained. Table 1 confirms that no variables differed significantly between the training and testing groups.
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Table 1. Baseline characteristics of differentiated thyroid cancer patients without structural disease in the

training and testing cohorts for prediction of treatment response to 1311 therapy (N = 854).

Feature Testing Group (n = 257) Training Group (n =597) P-value
Gender 25
Female 173 (67.3%) 426 (71.4%)
Male 84 (32.7%) 171 (28.6%)
Age, median (years) 43 (IQR, 33~53) 45 (IQR, 36~54) 12
Histology 1.00
Papillary thyroid carcinoma 253 (98.4%) 586 (98.2%)
Follicular thyroid carcinoma 4 (1.6%) 11 (1.8%)
TNM-T stage 55
T1 167 (65.0%) 397 (66.5%)
T2 52 (20.3%) 98 (16.4%)
T3 24 (9.3%) 66 (11.1%)
T4 14 (5.4%) 36 (6.0%)
TNM-N stage .16
NO 14 (5.4%) 48 (8.1%)
Nla 108 (42.0%) 215 (36.0%)
N1b 135 (52.6%) 334 (55.9%)
Clinical stage 78
I 208 (80.9%) 471 (78.9%)
I 48 (18.7%) 122 (20.4%)
I 1 (0.4%) 4 (0.7%)
v 0 (0%) 0 (0%)
Risk category .87
Low 25 (9.7%) 60 (10.1%)
Intermediate 206 (80.2%) 483 (80.9%)
High 26 (10.1%) 54 (9.0%)
RAIU%, median 6.0 (IQR, 3.7-8.5) 6.5 (IQR, 4.2~8.6) 12
TSHon, median (mIU/L) 0.25 (IQR, 0.07-0.68) 0.32 (IQR, 0.08-0.75) .16
Tgon, median (ng/mL) 2.61 (IQR, 1.46-4.65) 2.68 (IQR, 1.52-5.43) 25
TgAbon, median (IU/mL) 11.20 (IQR, 10.00-15.92) 11.70 (IQR, 10.00-17.09) 42
TSHoff, median (mIU/L) 100.00 (IQR, 95.40-100.00) 100.00 (IQR, 95.20-100.00) 23
Tgoff, median (ng/mL) 21.39 (IQR, 14.07-36.24) 22.09 (IQR, 15.37-36.75) 18
TgAboff, median (IU/mL) 12.00 (IQR, 10.00-16.92) 11.87 (IQR, 10.00-17.80) 94
Number of 1311 courses 94

0

178 (69.3%)

411 (68.8%)

>1

79 (30.7%)

186 (31.2%)

Abbreviations: PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; TSHon, thyroid-stimulating hormone before Levothyroxine
withdrawal; Tgon, suppressed thyroglobulin; TgAbon, antithyroglobulin antibody before Levothyroxine withdrawal; TSHoff, thyroid-
stimulating hormone after Levothyroxine withdrawal, Tgoff, stimulated thyroglobulin; TgAboff, antithyroglobulin antibody after
Levothyroxine withdrawal; IQR, interquartile range; RAIU, radioiodine uptake.

Predicting treatment response to 1311 Therapy
Within the training group, 45.2% (270/597) of cases attained ER following 1311 therapy, compared to 54.8%
(327/597) exhibiting non-ER (Table 2). Corresponding figures in the testing group were 45.5% (117/257) for ER

and 54.5% (140/257) for non-ER.

Table 2. Comparison of clinical characteristics of differentiated thyroid cancer patients without structural
disease who obtained ER or non-ER to 1311 therapy in the training and testing cohorts (N = 854).

Feature Testing Group Training Group
_ Non-ER (n= P- _ Non-ER (n= P-
ER (n=117) 140) value ER (n=270) 327) value
Gender 18 .03
Female 84 (71.8%) 89 (63.6%) 205 (75.9%) 221 (67.6%)
Male 33 (28.2%) 51 (36.4%) 65 (24.1%) 106 (32.4%)
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Age, median (years) 44 (IQR, 35-55) 42 (IQR, 32-52) .07  45(IQR, 36-53) 45 (IQR, 36-54) .69
Histology 13 1.00
Papillary thyroid 117 (100.0%) 136 (97.1%) 265 (98.1%) 321 (98.2%)
carcinoma
Follicular thyroid 0 (0.0%) 4(2.9%) 5(1.9%) 6 (1.8%)
carcinoma
TNM-T stage .64 .69
T1 77 (65.8%) 90 (64.3%) 184 (68.1%) 213 (65.1%)
T2 25 (21.4%) 27 (19.3%) 39 (14.4%) 59 (18.0%)
T3 8 (6.8%) 16 (11.4%) 30 (11.1%) 36 (11.0%)
T4 7 (6.0%) 7 (5.0%) 17 (6.3%) 19 (5.8%)
TNM-N stage 46 .01
NO 8 (6.8%) 6 (4.3%) 24 (8.9%) 24 (7.3%)
Nla 52 (44.4%) 56 (40.0%) 116 (43.0%) 99 (30.3%)
Nib 57 (48.8%) 78 (55.7%) 130 (48.1%) 204 (62.4%)
Clinical stage .09 .69
1 89 (76.0%) 119 (85.0%) 216 (80.0%) 255 (78.0%)
11 27 (23.1%) 21 (15.0%) 53 (19.6%) 69 (21.1%)
11 1(0.9%) 0 (0%) 1(0.4%) 3 (0.9%)
v 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Risk category .01 .01
Low 16 (13.6%) 9.(6.4%) 36 (13.3%) 24 (7.3%)
Intermediate 96 (82.1%) 110 (78.6%) 224 (83.0%) 259 (79.2%)
High 5 (4.3%) 21 (15.0%) 10 (3.7%) 44 (13.5%)
) 59(IQR,3.8- 6.0 (IQR, 3.7- 6.9 (IQR,4.9- 6.1 (IQR, 3.5-
RAIU%, median (54) (57) .96 (57) (55) .01
TSHon, median  0.22(IQR,0.07- 028 (IQR,0.08- = 039 (IQR,0.09- 027(IQR,007- -
(mIU/L) 0.57) 0.71) 0.83) 0.70)
Tgon, median L43(IQR, 116~ 432(IQR.251- |~ L60(IQR,124- 439(QR.2.52-
(ng/mL) 2.23) 6.51) 2.44) 7.07)
TgAbon, median 11.6 (IQR, 10.71 (IQR, n 11.62 (IQR, 11.73 (IQR, o
(IU/mL) 10.00-16.09) 10.00-15.65) 10.00-17.31) 10.00-17.05)
TSHoff, median 100.00 (IQR, 100.00 (IQR, P 100.00 (IQR, 100.00 (IQR, o
(mIU/L) 92.70-100.00)  96.66-100.00) 97.70-100.00)  88.10-100.00)
Tgoff, median 15.10 (IQR, 31.89 (IQR, ol 16.37 (IQR, 30.83 (IQR, ol
(ng/mL) 11.97-19.67) 20.29-42.98) 12.00-22.60) 21.00-47.00)
TgAboff, median 11.50 (IQR, 12.70 (IQR, u 11.43 (IQR, 12.00 (IQR, 0
(IU/mL) 10.00-15.69) 10.00-17.39) 10.00-16.70) 10.00-18.20)
Number of 1311 o1 01
courses
0 96 (82.1%) 82 (58.6%) 221 (81.9%) 190 (58.1%)
>1 21 (17.9%) 58 (41.4%) 49 (18.1%) 137 (41.9%)

Abbreviations: ER, excellent response; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; TSHon, thyroid-stimulating hormone
before Levothyroxine withdrawal; Tgon, suppressed thyroglobulin; TgAbon, antithyroglobulin antibody before Levothyroxine withdrawal,
TSHoff, thyroid-stimulating hormone after Levothyroxine withdrawal; Tgoff, stimulated thyroglobulin; TgAboff, antithyroglobulin antibody
after Levothyroxine withdrawal; IQR, interquartile range; RAIU, radioiodine uptake.

Variables displayed minimal multicollinearity, as indicated in Figure 2a. After screening and LASSO processing,
key features distinguishing patients with and without ER included sex, TNM-N, risk stratification, RAIU%, Tgon,
TSHoff, Tgoff, and the count of previous 1311 courses. These emerged as top indicators for the risk of non-ER,
depicted in Figures 2b and 2c.
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Figure 2. Development and validation of a machine learning model to predict treatment response to
radioiodine (131I) therapy in patients with differentiated thyroid cancer without structural disease. (a)
Correlation analysis among the factors included in the study that are linked to 1311 therapy. (b) Application
of the least absolute shrinkage and selection operator (LASSO) to identify the most influential factors
associated with treatment response to 1311 therapy. (c) Determination of the optimal A corresponding to the
lowest mean square error for selecting features. (d) Receiver operating characteristic curve (ROC) analysis
showing the area under the curve (AUC) for predicting treatment response.

During model training, LG, SVM, RF, NN, ADA, and GB algorithms were employed, and their predictive
performance was evaluated using AUC in the testing cohort. The findings indicated that all algorithms achieved
similar predictive capabilities for treatment response to 1311 therapy, with RF showing the highest accuracy of
81.3% and an AUC of 0.896, as presented in Figure 2d.

The impact of each influential factor within RF was assessed using SHAP analysis, shown in Figure 3a. Higher
values of TNM-N, risk stratification, Tgon, and Tgoff prior to the current course of 1311 therapy were linked to
non-ER outcomes. Among these, Tgon and Tgoff before the current course emerged as the top two factors with
the greatest influence on RF’s prediction of 1311 therapy response, as illustrated in Figure 3b. Furthermore, 10
RF ensembles, each containing 500 trees, were trained using the identified influential factors. The selection
frequency of each factor at the root and at levels one to three of the trees in the ensembles was calculated to
determine their relative importance. Node-splitting cutoff thresholds were chosen to maximize impurity reduction
across all candidate splits [20]. One example of an RF ensemble is shown in Figure 3c¢. Predictions for a random
sample of patients indicated ER to 1311 therapy using this RF ensemble, as presented in Figure 5d. These
predictions were consistent with final follow-up results, confirming the model’s ability to accurately predict
treatment response to 1311 therapy.
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Figure 3. Random forest (RF) setup to forecast radioiodine (131I) outcomes among differentiated thyroid
cancer cases lacking visible lesions. (a) SHAP overview of top variables' effects. (b) Linkage of off/on
thyroglobulin states within RF framework. (c) Example tree cluster from RF aimed at 1311 outcome calls. (d)
Case study: RF applied to one patient's 1311 response forecast.

Baseline data for TSH suppression outcome forecasts
Four to six months after final 1311 ablation, Tgon exceeded 0.2 ng/mL in 54.6% (326/597) training cases and

54.8% (141/257) validation cases. Table 3 lists traits for TSH suppression modeling groups; only prior 1311

rounds varied notably between sets.

Table 3. Core traits among differentiated thyroid cancer cases without lesions in training/validation groups for
TSH suppression response modeling (N = 467).

L. Testing cohort (n = Training cohort (n =
h P-val
Characteristic 141) 326) value
75

Sex
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Female 92 (65.2%) 218 (66.9%)
Male 49 (34.8%) 108 (33.1%)
Age, median (years) 45 (IQR, 35-54) 43 (IQR, 35-53) 41
Pathology 18
PTC 136 (96.5%) 321 (98.5%)
FTC 5(3.5%) 5(1.5%)
Tumor .55
T1 95 (67.4%) 208 (63.8%)
T2 21 (14.9%) 65 (19.9%)
T3 18 (12.8%) 34 (10.4%)
T4 7 (4.9%) 19 (5.8%)
Lymph node .76
NO 8 (5.7%) 22 (6.7%)
Nla 44 (31.2%) 111 (34.0%)
N1b 89 (63.1%) 193 (59.3%)
Stage .79
I 114 (80.9%) 260 (79.8%)
I 27 (19.1%) 63 (19.3%)
III 0 (0%) 3 (0.9%)
v 0 (0%) 0 (0%)
Risk stratification .90
Low 11 (7.8%) 22 (6.7%)
Mediate 111 (78.7%) 258 (79.1%)
High 19 (13.5%) 46 (14.1%)
RAIU%, median 6.0 (IQR, 3.7-8.5) 6.1 (IQR, 3.5-8.5) .80
Courses of 1311 therapy .08
1 91 (64.5%) 181 (55.5%)
>1 50 (35.5%) 145 (44.5%)
TSHsix, median (mIU/L) 0.08 (IQR, 0.06-0.23) 0.12 (IQR, 0.06-0.27) 46
Tgsix, median (ng/mL) 0.79 (IQR, 0.45-1.86) 1.08 (IQR, 0.51-1.97) .16
TgAbsix, median (IU/mL) 12.00 (II S(I){(;)IO'OO_ 1285 (213([){6)10'00_ 45
Thyroid remnant on Rx-WBS of the last course of 24
therapy
Yes 42 (29.8%) 117 (35.9%)
No 99 (70.2%) 209 (64.1%)

Key terms: TSH, thyroid-stimulating hormone; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; RAIU, radioiodine uptake;
TSHsix, thyroid-stimulating hormone at 4-6 months after the last course of 1311 therapy; Tgsix, stimulated thyroglobulin at 4-6 months after
the last course of 1311 therapy; IQR, interquartile range; Rx-WBS, post-therapeutic whole-body scan.

Table 4. Trait contrasts for differentiated thyroid cancer cases without lesions achieving BR versus non-BR
under TSH suppression across training/validation groups (N = 467).

Characteristic Testing cohort (n = 141) P- Training cohort (n = 326) P-
value value
_ Non-BR (n= _ Non-BR (n=
BR (n=72) 69) BR (n=155) 171)
Sex .01 .01

Female 60 (83.3%) 32 (46.4%) 121 (78.1%) 97 (56.7%)

Male 12 (16.7%) 37 (53.6%) 34 (21.9%) 74 (43.3%)
Age, median (years) 46 (I(S);, 38— 42 (I(S)g, 35— 16 45 (I?j;, 35— 43 (I(S);, 34— 38
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Pathology 1.00 1.00
PTC 69 (95.8%) 67 (97.1%) 153 (98.7%) 168 (98.2%)
FTC 3 (4.2%) 2 (2.9%) 2 (1.3%) 3 (1.8%)
Tumor stage .49 .88
T1 45 (62.5%) 50 (72.5%) 96 (61.9%) 112 (65.5%)
T2 11 (15.3%) 10 (14.5%) 32 (20.7%) 33 (19.3%)
T3 12 (16.7%) 6 (8.7%) 18 (11.6%) 16 (9.4%)
T4 4 (5.5%) 3 (4.3%) 9 (5.8%) 10 (5.8%)
Lymph node status .01 22
NO 8 (11.1%) 0 (0%) 9 (5.8%) 13 (7.6%)
Nla 26 (36.1%) 18 (26.1%) 60 (38.7%) 51(29.8%)
N1b 38 (52.8%) 51 (73.9%) 86 (55.5%) 107 (62.6%)
Overall stage .83 .52
| 59 (81.9%) 55(79.7%) 120 (77.4%) 140 (81.9%)
I 13 (18.1%) 14 (20.3%) 33 (21.3%) 30 (17.5%)
I 0 (0%) 0 (0%) 2 (1.3%) 1 (0.6%)
v 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Risk group .01 .01
Low 10 (13.8%) 1 (1.4%) 10 (6.5%) 12 (7.0%)
Intermediate 57 (79.2%) 54 (78.3%) 133 (85.8%) 125 (73.1%)
High 5(7.0%) 14 (20.3%) 12 (7.7%) 34 (19.9%)
RAIU%, median 5.5 (I;);{), 3.7 6.2 (I;).‘It{), 3.7 28 6.0 (I;);{), 4.0 6.2 (Ig;, 3.2 78
Number of 1311 therapy ol
courses
1 course 58 (80.6%) 33 (47.8%) 115 (74.2%) 66 (38.6%)
>1 course 14 (19.4%) 36 (52.2%) 40 (25.8%) 105 (61.4%)
TS medan @IV 02035 oo aie)  ® geos ooz O
roxmamogm) G000 GOS0 amase oreaey O
TgAbsix, median (IU/mL) 1102.6205—;[0?3}23’) 1102.6(2)0—(1[5(?0’) 7 110‘%6000—(2[3?(1)20’) 1102.6000—(116?;6) 36
Thyroid remnant on Rx- o1 o1
WBS in last 1311 course
Yes 58 (80.6%) 33 (47.8%) 16 (10.3%) 101 (59.1%)
No 14 (19.4%) 36 (52.2%) 139 (89.7%) 70 (40.9%)

Key terms: TSH, thyroid-stimulating hormone; BR, biochemical remission; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer;
RAIU, radioiodine uptake; TSHsix, thyroid-stimulating hormone at 4-6 months after the last course of 1311 therapy; Tgsix, stimulated
thyroglobulin at 4-6 months after the last course of 1311 therapy; TgAbsix, antithyroglobulin antibody at 4-6 months after the last course of
1311 therapy; IQR, interquartile range; Rx-WBS, post-therapeutic whole-body scan.

Forecasting TSH suppression outcomes

Table 4 reports ATgon% shifts spanning 6 to 12-24 months post-final 1311: training saw 47.5% (155/326) hit BR
thresholds against 52.5% (171/326) non-BR, while validation logged 51.1% (72/141) BR and 48.9% (69/141)
non-BR.

Factors showed weak interlinks (Figure 4a). Univariate checks flagged sex, risk group, pre-final-1311 RAIU%,
TSHsix, Tgsix, 1311 round totals, plus remnant uptake on last Rx-WBS as BR differentiators. Cross-validated
LASSO pruned to sex, risk group, TSHsix, Tgsix, 1311 totals, and last Rx-WBS remnant as prime non-BR signals
(Figures 4b-4c).
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Figure 4. Machine learning pipeline build/test for thyrotropin (TSH) suppression response in differentiated
thyroid cancer without lesions. (a) Variable interlinks tied to TSH suppression. (b) LASSO tuning of top
response drivers for TSH suppression. (¢) A sweet spot minimizing error in feature picks. (D) ROC-AUC plot

for TSH suppression response forecasts.

Training deployed LG, SVM, RF, NN, ADA, GB constructs, scored via test-set AUCs. RF topped charts at 78.7%

accuracy, 0.857 AUC (Figure 4d).

Figure 5a displays the impact of key variables on the Random Forest model via SHAP interpretation. Presence
of thyroid remnant on the post-therapy whole-body scan from the final 1311 cycle, along with elevated TSHsix
values, showed a strong positive link to achieving BR under TSH suppression therapy. These two elements ranked
as the top contributors driving RF forecasts for TSH suppression outcomes, as depicted in Figure 5b. An
illustrative tree from one RF ensemble appears in Figure 5c. Application of this ensemble to a randomly chosen
case correctly forecasted BR for TSH suppression therapy, presented in Figure 5d. The forecast aligned precisely
with long-term clinical results, confirming the model's robustness for anticipating TSH suppression response.
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Figure 5. Random forest (RF) framework designed to forecast thyrotropin (TSH) suppression outcomes in
differentiated thyroid cancer cases lacking visible lesions. (a) SHAP overview highlighting effects of top
variables. (b) Relationship of TSH levels and remnant thyroid visibility on post-therapy scans within RF. (c)
Sample tree structure from RF ensemble targeting TSH suppression response calls. (d) Example case: RF
deployment for one patient's TSH suppression outcome projection.

As far as we are aware, this represents the initial effort to create machine learning systems capable of forecasting
responses to both 1311 therapy and TSH suppression therapy. Multiple predictive frameworks were developed to
identify individuals likely to gain from these interventions, relying solely on baseline clinical data and laboratory
indicators across a substantial patient group. Random Forest emerged as the superior performer. The resulting
tools delivered strong classification precision for ER under 1311 therapy and BR under TSH suppression, offering
valuable support for clinical decision-making.

Clinical application of 1311 therapy spans eight decades [21]. Historically, treatment protocols have drawn on
elements like surgical pathology details, radioiodine imaging findings, plus TSH and Tg measurements [22, 23].
In the current analysis, predictors of 1311 response included sex, risk category, TNM-N stage, RAIU%, Tgon,
Tgoff, TSHoff, and prior 1311 cycle count. Males exhibited superior Tg reduction, aligning with earlier reports
linking elevated estrogen to increased Tg expression—possibly through enhanced release of mutagenic agents in
thyroid tissue and promotion of tumor growth [24]. Risk stratification displayed a modest inverse tie with ER
likelihood; while 1311 is typically advised for higher-risk cases [25], such patients proved harder to reach ER,
implying need for alternative approaches to Tg control. Residual thyroid tissue remains the primary driver of
persistent high Tg post-thyroidectomy. Pre-therapy RAIU% assesses remnant activity [26], and detectable pre-
cycle Tg signals ongoing remnant or biochemical persistence, aiding therapy planning [12]. Prior work by Li et
al. tied Tgoff closely to ER after first 1311 administration, identifying a cutoff of 6.915 pg/L yielding 69.2%
sensitivity and 89.4% specificity [27]. Our results similarly underscored major roles for RAIU% and Tg in ER
projection. Most cases retained 1311 uptake in the thyroid bed or thyroglossal remnants on post-therapy scans,
particularly post-initial cycle. Tg declines grew evident with additional cycles, supporting the value of repeat 1311
administrations for response attainment.
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Cases showing elevated Tg alongside negative Rx-WBS often warrant further investigation and potential adjunct
interventions [3, 12, 28]. Notably, among those with non-avid lesions post-current cycle, Tgon fell below 0.2
ng/mL after extra 1311 rounds in 26.3% (49/186) training cases and 26.6% (21/79) testing cases. This reinforces
high Tg as a marker prompting adjuvant measures to lower levels and streamline staging plus monitoring [28,
29].

TSH suppression therapy serves as a key strategy following thyroidectomy and 1311 treatment in thyroid cancer
management. It inhibits thyroid cancer cell proliferation and promotes Tg reduction by keeping TSH below normal
ranges [30]. Among the variables examined here, our work provides the first robust evidence that visible thyroid
remnant on the post-therapy whole-body scan from the final 1311 cycle, combined with elevated TSHsix, reliably
marks patients likely to gain biochemical remission from TSH suppression. Raised TSHsix typically signals
inadequate levothyroxine dosing; with proper adjustment, Tg usually drops quickly. Individuals classified as
intermediate- or high-risk DTC may derive limited advantage from this approach [31]. Remnant thyroid tissue
detected on the last Rx-WBS often explains persistent Tg elevation. To minimize any lingering influence from
prior 1311 on Tg values, response evaluation compared Tgon at 6 months versus 12-24 months after the final 1311
administration. Still, residual 1311 effects at the 6-month mark cannot be fully excluded. Furthermore, nadir Tg
achievement rates rise gradually during ongoing suppression, supporting a conservative stance—avoiding extra
interventions in cases with stably low Tg and no structural lesions [32]. We noted Tg reductions mainly among
those starting with modest elevations. Yet nearly half the cohort with higher baseline Tg failed to show decline.
Potential reasons include suboptimal medication compliance or issues affecting drug absorption/metabolism [33].
Alternatively, prior 1311 cycles might have lacked efficacy, especially in aggressive or advanced cases where
ablation proves incomplete. Rising Tg can also signal early recurrence, warranting additional diagnostics. Certain
basic traits, like sex, correlate with spontaneous Tg fall but fall outside ATA risk frameworks. Consistent with
1311 findings, males responded better to suppression. Nonetheless, therapy choices must remain tailored,
balancing risks against expected gains for every individual.

Here, we integrated selected predictors into six machine-learning frameworks—Logistic Regression (LR),
Support Vector Classifier (SVC), Random Forest (RF), Neural Network (NN), Adaptive Boosting (ADA), and
Gradient Boosting (GB)—to forecast responses to 1311 or TSH suppression. All approaches performed similarly,
though RF achieved top accuracy and AUC values. RF operates as an ensemble method, constructing numerous
decision trees via bagging and random feature selection. Each tree trains on distinct data subsets using varied
feature combinations, then aggregates outputs for the final call. This randomness enhances robustness, curbs
overfitting, and allows capture of intricate feature-outcome interactions, driving superior precision [34, 35]. By
incorporating routine pre-intervention clinical and laboratory data, RF effectively separates likely beneficiaries
from non-responders ahead of treatment.

Certain constraints apply to this work. First, the retrospective design focused on DTC cases without structural
disease who underwent at least one 1311 cycle, potentially introducing selection bias and limiting generalizability
to untreated cohorts at our center. Second, recruitment occurred at one facility; validation across external sites
would strengthen conclusions. Third, predictors relied solely on available pre-treatment clinical and biochemical
elements. Key potential influencers, such as BRAF mutation status, were omitted owing to extensive missing
records.

Conclusion

These results establish machine-learning approaches, particularly Random Forest, as powerful instruments for
anticipating responses to 1311 therapy and TSH suppression therapy among differentiated thyroid cancer patients
lacking structural disease, using only standard pre-treatment clinical parameters and laboratory indicators.
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