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ABSTRACT

Clostridioides difficile infection poses major clinical and operational challenges. Hospitals have both quality and
economic motivations to manage CDI effectively. Universal admission screening is rarely recommended, and
prior modeling efforts often relied on limited samples, overly complex feature sets, or black-box techniques. Our
goal was to create models using patient information to estimate the likelihood of a positive test with strong
discrimination, clear interpretability, and a practical set of long-term health indicators. We used records from
157,493 UC San Diego Health patients seen between January 01, 2016, and July 03, 2019 who had at least 6
months of medication history. Pregnant individuals, patients under 18, and incarcerated persons were excluded.
We trained Logistic Regression, Random Forest, and Ensemble models using hyperparameters tuned through 10-
fold cross-validation. Performance was evaluated by AUROC. Logistic Regression coefficients were examined
via odds ratios and p-values; Random Forest feature contributions were assessed using Gini importance. We also
compared false-positive and false-negative predictions at selected thresholds.

The Logistic Regression, Random Forest, and Ensemble models produced AUROCs of 0.839, 0.851, and 0.866,
respectively. Variables associated with elevated risk included age, use of immunosuppressive therapies, previous
antibiotic exposure, and certain gastrointestinal medications. All models demonstrated strong discrimination
(AUROC >0.83). Across analytic methods, similar predictors emerged as influential, many of which are consistent
with established clinical risk factors for Clostridioides difficile. These human-readable models help identify
factors shaping a patient’s likelihood of a positive test and the associated infection risk.

Keywords: Clostridioides difficile infection, Electronic health record, Machine learning, Decision support
systems
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Introduction

Clostridioides difficile infection and diagnostic complexity

CDI, caused by C. diff, can lead to severe gastrointestinal disease, including colitis, pseudomembranous colitis,
life-threatening diarrhea, and sepsis [1, 2]. Older adults and those exposed to antibiotics—particularly in long-
term care—are at amplified risk [3]. The CDC classifies CDI as a significant national threat [4]; in 2017, U.S.
hospitals recorded roughly 223,900 cases, 12,800 deaths, and close to $1 billion in HA-related costs [5]. Not
meeting the CDC’s standardized infection ratio (SIR) [6] can harm a hospital’s standing and impose financial
burdens [7]. For instance, UCSD Health’s 2015-2017 HA-CDI rate exceeded the 2015 national baseline SIR [8].
As a result, lowering HA-CDI is a central quality and financial goal.

C. diff spores withstand many common disinfectants and persist on treated surfaces [9—11], motivating interest in
more proactive strategies that remain aligned with guidelines. One institution reported that screening nearly all
admissions prevented up to 62 % of expected infections and steadily reduced CDI rates [12]. Early case
identification also clarifies whether infections are hospital- or community-acquired, improving monitoring
accuracy. Nonetheless, broad admission testing is discouraged because it may lead to overdiagnosis and unneeded
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antimicrobial therapy, accelerating resistance [13]. Current recommendations, therefore, emphasize testing only
when symptoms appear [14]. This creates a timing dilemma: patients colonized at admission have higher odds of
developing CDI [15] and can shed spores that contribute to transmission [16, 17]. These constraints highlight the
value of data-driven methods capable of estimating risk without requiring immediate laboratory testing, while still
offering actionable insights to clinicians.

Current machine learning models to predict CDI and their drawbacks

Researchers have proposed various risk-stratification tools to help identify individuals likely to test positive for
C. diff. However, most prior efforts relied on datasets with relatively small patient cohorts (roughly 8,000-36,000
individuals [18, 19]); very large feature sets (around 1,800—5,000 variables—often binary encodings of attributes
that only apply to some patients [20]), which make the resulting models difficult to interpret; and/or predictors
tied heavily to recent clinical activity, such as antibiotic prescriptions within 30 days of testing [21], which may
overlook the cumulative impact of microbiome-altering treatments over longer intervals [22].

To address these shortcomings, we built CDI prediction models that (i) use a substantially larger real-world cohort
(157,493 UCSD Health patients), (ii) offer strong discrimination and interpretability by limiting the model to 104
core demographic and medication-based predictors, and (iii) capture longitudinal health history over a 3-year
period. Because a positive laboratory result may reflect colonization rather than active CDI, our intention is to
provide clinicians with an additional decision-support tool—one that complements existing diagnostic pathways
and helps balance the gap between testing every asymptomatic patient and waiting for severe symptoms before
screening.

Objective

Our task is to predict the first instance of a positive C. diff laboratory test using demographic variables and
medication history up to one calendar day before the order date for that first positive test (Figure 1). In practice,
this typically falls at least two days before results are available, potentially enabling earlier intervention. Since
adults carrying toxigenic C. diff have a six-fold greater risk of progressing to infection [15], anticipating
colonization may play an important role in reducing CDI incidence.
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8) ¥ L} ! Positive
; 1 calendar day :
: Medication History Negative test |
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01/01/2016 03/07/2019
Figure 1. Overview of the prediction labels used in this study. Four scenarios define patient classification:
(A) a patient with a single positive test is categorized as Positive; (B) a patient with several positive tests is
also labeled Positive, using the earliest result; (C) a patient with a negative test is classified as a Control; and

(D) a patient who never receives a C. diff test is also treated as a Control.
Materials and Methods

The study pipeline is summarized in Figure 2, consisting of three major steps: Data, Model Construction, and
Evaluation. Each component is explained in the subsections below.
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Figure 2. Study workflow.
(A) Data: Demographics and medication histories for 157,493 UCSD Health patients seen between
01/01/2016-03/07/2019 were transformed into analytic vectors.
(B) Model Construction: We developed models using Logistic Regression, Random Forest, and an Ensemble
approach.
(C) Evaluation: We assessed model performance and conducted feature-level analyses.

Data

Figure 2a outlines the data preparation process. We accessed information for 157,493 UCSD Health patients
admitted between January 01, 2016 and July 03, 2019 (IRB approval #190457CX). Eligible patients were those
with at least one admission during the study period and a minimum of six months of medication history. Excluded
groups included individuals younger than 18, pregnant patients, incarcerated persons, and those missing age data.
In total, 1,541 individuals (1%) were labeled as having a CDI Positive test result as defined in Figure 1.
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To construct the predictors, we selected a focused set of variables covering demographic factors and medication
exposures—attributes that naturally reflect a patient’s physiologic trajectory over time. The final dataset contained
104 covariates: 10 demographic variables (age, race, gender, etc.) derived from UCSD Health metadata, and 94
medication-related features summarizing usage patterns during the observation window. Medication names
(originally 4,420 unique items) were consolidated into 94 pharmacologic classes to reduce dimensionality, avoid
extensive imputation, improve interpretability, and retain essential clinical meaning. A pharmacologic class
groups medications whose active components share similarities based on one or more characteristics: mechanism
of action, physiologic impact, or chemical structure [23].

Model construction

The model-building and hyperparameter-selection workflow is depicted in Figure 2b. We selected two
algorithms—multivariate Logistic Regression (LR) and Random Forest (RF)—because they offer clearer
interpretability for clinical users [24]. Their outputs allow clinicians to pinpoint influential factors and consider
potential clinical actions. For LR, the magnitude and sign of each coefficient reflect its impact on predicted risk
[25], while for RF, the Gini importance reflects how each variable contributes to the tree-based split decisions that
lead to classification [26]. Both approaches offer more transparent logic than deep learning models, whose internal
parameters typically provide little insight into how predictions are formed [27]. Another motivation for using LR
and RF instead of temporal models such as recurrent neural networks [28] or transformers [29] is the absence of
a coherent, interpretable preprocessing strategy for highly irregular patient histories. Patients differ widely in
length of stay and number of admissions, and applying time-series models would require extensive imputation
[30], further obscuring how original inputs relate to final predictions.

To further boost discrimination, we created an Ensemble method combining LR and RF [31, 32]. Specifically, we
used an Average Ensemble [33], taking the mean of the LR and RF prediction scores to form a final risk estimate
for each patient. Besides possibly improving accuracy, this also reveals whether the two algorithms provide
complementary information (higher or stable AUC) or conflicting signals (notable drop in AUC).

To determine model hyperparameters, we randomly reserved 10% of the data as a held-out test set. Given the
strong class imbalance, the loss function applied proportional class weights so the minority class was not ignored.
Both LR and RF hyperparameters were tuned via grid search with 10-fold cross-validation on the remaining 90%
of the dataset. During each fold, 81% of the data was used for training and 9% for validation. After identifying
optimal settings, the LR and RF models were retrained using 90% of the full dataset, and performance was later
evaluated on the 10% hold-out portion.

We implemented all models using Scikit-learn [34], produced visualizations with Matplotlib [35], and performed
statistical computations with SpiCy [36]. All analyses were carried out in Python within a secure, HIPAA-
compliant environment.

Evaluation
The evaluation procedure is summarized in Figure 2c. We used the Area Under the Receiver Operating
Characteristic Curve (AUROC) [37] as the principal metric. For each algorithm (LR, RF, Ensemble), two AUROC
values were reported:
1. Cross-Validation AUROC: The average AUROC across the 10 cross-validation models was trained on
81% of the data and evaluated on their respective 9% validation folds.
2. Test AUROC: The AUROC was calculated from the final model trained on 90% of the data and tested
on the 10% hold-out set.
We also explored population demographics to contextualize the dataset. For the final LR model, we examined
coefficient significance by comparing the estimated magnitudes, their associated odds ratios, and corresponding
p-values. This included a univariate step followed by a multivariate analysis. The univariate stage served mainly
to confirm consistency with multivariate findings and to avoid carrying forward predictors with very high p-
values. Because interactions among drug classes may alter gut microbiota [38, 39] or enhance toxin production in
certain strains [40], and thereby influence CDI risk, we did not enforce covariate independence.
For the RF model, we documented Gini importance scores [41] to identify features with stronger contributions to
CDI risk [42]. Additionally, we performed a decision-boundary assessment to revisit the typical 0.5 classification
threshold. Since clinicians may weigh false positives and false negatives differently, we examined how predictions
change when the threshold moves from 0 to 1 in 0.01 increments. For each threshold, we recorded pairwise counts

e
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of false positives and false negatives to allow clearer visualization of trade-offs than is available from the standard
ROC curve.

Results and Discussion

Demographic characteristics

When comparing the Positive and Control cohorts, the overall split between female and non-female participants
(including those without reported gender) showed no major contrast. In contrast, the Positive group contained a
significantly larger fraction of White individuals, and their mean age was also higher (58.43 compared with 53.59).
Regarding prior clinical records, individuals classified as Positive typically had a greater count of medication
entries per person. A consolidated overview of these characteristics is presented in Table 1.

Table 1. Demographic overview for the Positive and Control cohorts.

Patient Characteristic Positive C. difficile Cases (n =1,541) Control Group (n = 155,952)
Gender — Female 734 (47.63 %) 77,463 (49.67 %)
Race — White (vs non-White)* 923 (59.9 %) 87,130 (55.9 %)
Age (years) — Mean + SD* 58.43+£17.23 53.59 +£18.99
Age (years) — Median 60.2 54.93
Total medication units prescribed — Mean + SD* 84.95+107.3 28.77+£57.84

Asterisks (“+””) denote p < 0.001.

Model performance

During cross-validation, the Logistic Regression (LR) model achieved a mean AUROC 0f 0.793 (95% CI: 0.763—
0.823). The Random Forest (RF) model reached 0.833 (95% CI: 0.805-0.861), while the Ensemble configuration
obtained 0.828 (95% CI: 0.802—-0.854). For the final evaluation on the untouched test partition, AUROC values
were 0.839 for LR and 0.851 for RF. The combined Ensemble model—integrating outputs from LR and RF—
yielded the highest AUROC at 0.866 (Figure 3). Across both phases, each approach demonstrated strong
discriminatory performance.

Receiver Operating Characteristic
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P & Random Forest ROC AUC = 0.851
/

rd - Ensemble ROC AUC = 0 866

s 6
False Positive Rate

Figure 3. AUROC plots for the finalized LR, RF, and Ensemble models.

Feature analysis
Table 2a lists the twenty LR features showing the smallest p-values (all p < 0.0001) along with their multivariate
odds ratios. Table 2b presents the twenty RF features with the highest Gini importance scores.

Table 2. Feature analysis results for LR and RF models. A) Top 20 LR multivariate predictors with p <0.001,
ordered by increasing p-value. B) Top 20 RF predictors ordered by Gini importance.

a) Logistic Regression — Multivariable Adjusted Odds Ratios
Rank Feature Odds Ratio
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1 Antidiarrheals 2.3529
2 Misc. anti-infectives 1.2558
3 Fluoroquinolones 1.2250
4 Gout agents 1.2108
5 Misc. GI agents 1.1577
6 Penicillins 1.1491
7 Local anesthetics — parenteral 1.0816
8 Unassigned group 1.0391
9 Minerals & electrolytes 1.0265
10 Analgesics — opioids 1.0242
11 Age (per year) 1.0144
12 Antineoplastics 0.9684
13 Anticoagulants 0.9377
14 Diagnostic products 0.9326
15 Anti-rheumatic agents 0.9299
16 Laxatives 0.9268
17 Ophthalmic agents 0.8889
18 Other or mixed races (vs White) 0.8294
19 Tetracyclines 0.7735
20 Toxoids 0.5740
b) Random Forest — Feature Importance
Rank Feature Gini Index
1 Minerals & electrolytes 0.1507
2 Misc. anti-infectives 0.1493
3 Unassigned group 0.0686
4 Antiemetics 0.0396
5 Analgesics — opioids 0.0369
6 Diuretics 0.0319
7 Age 0.0295
8 Anticoagulants 0.0261
9 Local anesthetics — parenteral 0.0256
10 Fluoroquinolones 0.0190
11 Assorted classes 0.0190
12 Misc. GI agents 0.0179
13 Antihistamines 0.0172
14 Penicillins 0.0171
15 Corticosteroids 0.0164
16 Ulcer drugs / PPIs 0.0158
17 Hematopoietic agents 0.0149
18 Misc. Hematological agents 0.0147
19 Antineoplastics 0.0144
20 Analgesics — non-opioids 0.0142

Decision boundary analysis

Trade-off curves (Figure 4) illustrate how predicted false-negative and false-positive counts shift when the
classification threshold is varied from 0.4 to 0.6 in 0.01 increments. Separate curves are shown for LR (Figure
4a), RF (Figure 4b), and the Ensemble model (Figure 4c). Each plotted point represents the pairing of false-
negative and false-positive totals on the test set at a specific threshold.
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Figure 4. Relationship between false-negative and false-positive predictions as the threshold is adjusted
between 0.4 and 0.6 for (a) LR, (b) RF, and (c) Ensemble models.

Findings

All three modeling strategies produced consistently high AUROC values in both cross-validation and test
evaluations, indicating that they are suitable tools for estimating the likelihood of a positive CDI finding. The RF
model achieved the strongest cross-validated AUROC, whereas the Ensemble approach ranked highest in the final
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test stage. Across models, AUROCSs ranged from 0.793 to 0.866, and the Ensemble’s stability suggests that LR
and RF contribute complementary predictive signals. These values exceed those described in earlier research
relying on smaller datasets or larger variable sets (0.75-0.82 AUROC in prior studies [18, 20]).

Low p-value predictors in the LR model included several clinically recognizable indicators of CDI risk: patient
age [43], prior use of anti-infective medications such as penicillins and fluoroquinolones [44—46], signs of immune
suppression due to cancer therapies and associated treatment-related diarrhea prompting more frequent testing
[47], and markers of historical gastrointestinal issues (Misc. GI). Similar importance patterns emerged in the RF
model through its Gini rankings. This overlap reinforces the clinical relevance of these predictors. In particular,
antibiotic exposure again appears to exert substantial influence, underscoring the need for cautious prescribing.
Previous research shows that reducing patient susceptibility—which is heightened by antibiotic-driven
colonization and progression to CDI [48]—offers greater benefit for prevention than merely limiting transmission
[49].

The threshold—performance curves serve as an easily interpretable reference for clinicians, infection-prevention
teams, and laboratory staff when shaping testing strategies. By examining these plots, users can pinpoint cutoff
values that curb false negatives while also lowering false positives relative to nearby thresholds. Examples include
a threshold of 0.55 for the Logistic Regression model, which cuts roughly 100 false-positive predictions, and
thresholds of 0.48 and 0.56 for the Ensemble model, each lowering false positives by about 50-100 cases. These
visual tools may also support hospital leadership in conducting economic evaluations [50]. Threshold adjustments
can be incorporated into cost projections related to diagnostic revisions [51]. Financially, a CDI-positive inpatient
with health plan coverage is estimated to incur approximately $21,000 more in medical expenses than a
comparable CDI-negative inpatient [52], with the cost rising further when the infection recurs [53]. Meanwhile,
the price for a CDI stool assay lies between $15 and $128 (as of 2021) [54]. When combined with clinical
familiarity and operational experience, applying threshold-based modeling can provide valuable guidance for
balancing overtreatment risk against underdiagnosis. This principle is also applicable to other high-impact
pathogens, where avoiding false negatives is critical even if it means tolerating more false positives—COVID-19
being one notable case [55].

From an operational standpoint, these predictions may influence how care facilities manage patient flow, enhance
decontamination efforts, or monitor high-risk individuals more closely. In fact, one recent investigation identified
a single CT machine as the source of CDI transmission within a major academic medical center [56], underscoring
the importance of environmental vigilance even when spread is not outwardly apparent.

Limitations
The study has several constraints:

1. Choice of modeling strategies and calibration. To emphasize interpretability, the study relied on LR,
RF, and an Ensemble method. More complex approaches—such as deep learning architectures (RNNss,
transformers), or ensemble variations including boosting [57] and stacking [58]—were not explored.
Model calibration metrics like the estimated calibration index (ECI) [59], recalibration techniques such
as isotonic regression [60, 61], and alternative class-balancing tactics (e.g., upsampling or downsampling
[62]) remain untested.

2. Potential dependencies among predictors. Interactions or correlations between pharmacologic classes
were not examined, and additional assessment may clarify how these interdependencies influence CDI
susceptibility.

3. Clinical deployment. Although real patient data were used during model construction, integrating these
models seamlessly into day-to-day clinical operations requires further study. Additional work is
necessary to determine whether these predictions are valid for high-risk individuals who might not
typically undergo CDI testing.

4. Generalizability and real-world rollout. Model evaluation thus far has been limited to retrospective
UCSD data. The models have not yet been implemented at UCSD itself, nor assessed across other
healthcare systems or international environments.

5. Distinguishing colonization from active infection. The models identify positive test outcomes without
differentiating between true infection and colonization by C. difficile. Although colonization is strongly
correlated with infection, it is not a perfect proxy, and deeper analysis of this relationship is still required.
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6. Economic impact. The financial implications of modifying threshold cutoffs—particularly costs related
to monitoring borderline patients—have not been fully assessed and will require a more detailed
€conomic review.

Conclusion

The machine learning models developed in this study, based on extensive longitudinal medication histories and
demographic data, demonstrate high predictive accuracy for identifying a patient’s first positive CDI test. The
models were trained on a substantial dataset of 157493 UCSD Health patients, incorporating a 3-year
observational window and 104 covariates. They produced AUROC values ranging from 0.839 to 0.866, and their
outputs highlight clinically recognized risk indicators, including advanced age, antibiotic exposure, cancer-related
treatments, and gastrointestinal conditions. The threshold-based analyses further offer clinicians flexibility to
tailor their preferred balance between sensitivity and specificity. These concepts also generalize to other infectious
threats—such as COVID-19—where the consequences of missed diagnoses can be severe. Given that both CDI
and COVID-19 disproportionately affect individuals with comorbidities, early detection supported by such
predictive tools may reduce transmission, avoid critical complications, and help lower healthcare expenditures
while supporting institutional efforts to meet CDC standards.
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