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ABSTRACT 

Clostridioides difficile infection poses major clinical and operational challenges. Hospitals have both quality and 

economic motivations to manage CDI effectively. Universal admission screening is rarely recommended, and 

prior modeling efforts often relied on limited samples, overly complex feature sets, or black-box techniques. Our 

goal was to create models using patient information to estimate the likelihood of a positive test with strong 

discrimination, clear interpretability, and a practical set of long-term health indicators. We used records from 

157,493 UC San Diego Health patients seen between January 01, 2016, and July 03, 2019 who had at least 6 

months of medication history. Pregnant individuals, patients under 18, and incarcerated persons were excluded. 

We trained Logistic Regression, Random Forest, and Ensemble models using hyperparameters tuned through 10-

fold cross-validation. Performance was evaluated by AUROC. Logistic Regression coefficients were examined 

via odds ratios and p-values; Random Forest feature contributions were assessed using Gini importance. We also 

compared false-positive and false-negative predictions at selected thresholds. 

The Logistic Regression, Random Forest, and Ensemble models produced AUROCs of 0.839, 0.851, and 0.866, 

respectively. Variables associated with elevated risk included age, use of immunosuppressive therapies, previous 

antibiotic exposure, and certain gastrointestinal medications. All models demonstrated strong discrimination 

(AUROC >0.83). Across analytic methods, similar predictors emerged as influential, many of which are consistent 

with established clinical risk factors for Clostridioides difficile. These human-readable models help identify 

factors shaping a patient’s likelihood of a positive test and the associated infection risk. 
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Introduction 

Clostridioides difficile infection and diagnostic complexity 

CDI, caused by C. diff, can lead to severe gastrointestinal disease, including colitis, pseudomembranous colitis, 

life-threatening diarrhea, and sepsis [1, 2]. Older adults and those exposed to antibiotics—particularly in long-

term care—are at amplified risk [3]. The CDC classifies CDI as a significant national threat [4]; in 2017, U.S. 

hospitals recorded roughly 223,900 cases, 12,800 deaths, and close to $1 billion in HA-related costs [5]. Not 

meeting the CDC’s standardized infection ratio (SIR) [6] can harm a hospital’s standing and impose financial 

burdens [7]. For instance, UCSD Health’s 2015–2017 HA-CDI rate exceeded the 2015 national baseline SIR [8]. 

As a result, lowering HA-CDI is a central quality and financial goal. 

C. diff spores withstand many common disinfectants and persist on treated surfaces [9–11], motivating interest in 

more proactive strategies that remain aligned with guidelines. One institution reported that screening nearly all 

admissions prevented up to 62 % of expected infections and steadily reduced CDI rates [12]. Early case 

identification also clarifies whether infections are hospital- or community-acquired, improving monitoring 

accuracy. Nonetheless, broad admission testing is discouraged because it may lead to overdiagnosis and unneeded 
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antimicrobial therapy, accelerating resistance [13]. Current recommendations, therefore, emphasize testing only 

when symptoms appear [14]. This creates a timing dilemma: patients colonized at admission have higher odds of 

developing CDI [15] and can shed spores that contribute to transmission [16, 17]. These constraints highlight the 

value of data-driven methods capable of estimating risk without requiring immediate laboratory testing, while still 

offering actionable insights to clinicians. 

Current machine learning models to predict CDI and their drawbacks 

Researchers have proposed various risk-stratification tools to help identify individuals likely to test positive for 

C. diff. However, most prior efforts relied on datasets with relatively small patient cohorts (roughly 8,000–36,000 

individuals [18, 19]); very large feature sets (around 1,800–5,000 variables—often binary encodings of attributes 

that only apply to some patients [20]), which make the resulting models difficult to interpret; and/or predictors 

tied heavily to recent clinical activity, such as antibiotic prescriptions within 30 days of testing [21], which may 

overlook the cumulative impact of microbiome-altering treatments over longer intervals [22]. 

To address these shortcomings, we built CDI prediction models that (i) use a substantially larger real-world cohort 

(157,493 UCSD Health patients), (ii) offer strong discrimination and interpretability by limiting the model to 104 

core demographic and medication-based predictors, and (iii) capture longitudinal health history over a 3-year 

period. Because a positive laboratory result may reflect colonization rather than active CDI, our intention is to 

provide clinicians with an additional decision-support tool—one that complements existing diagnostic pathways 

and helps balance the gap between testing every asymptomatic patient and waiting for severe symptoms before 

screening. 

Objective 

Our task is to predict the first instance of a positive C. diff laboratory test using demographic variables and 

medication history up to one calendar day before the order date for that first positive test (Figure 1). In practice, 

this typically falls at least two days before results are available, potentially enabling earlier intervention. Since 

adults carrying toxigenic C. diff have a six-fold greater risk of progressing to infection [15], anticipating 

colonization may play an important role in reducing CDI incidence. 

 
Figure 1. Overview of the prediction labels used in this study. Four scenarios define patient classification: 

(A) a patient with a single positive test is categorized as Positive; (B) a patient with several positive tests is 

also labeled Positive, using the earliest result; (C) a patient with a negative test is classified as a Control; and 

(D) a patient who never receives a C. diff test is also treated as a Control. 

Materials and Methods  

The study pipeline is summarized in Figure 2, consisting of three major steps: Data, Model Construction, and 

Evaluation. Each component is explained in the subsections below. 

https://www.cell.com/cms/10.1016/j.heliyon.2024.e41350/asset/3a13873d-6d22-4f28-bcc2-88e7ee5e419c/main.assets/gr1_lrg.jpg
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Figure 2. Study workflow. 

(A) Data: Demographics and medication histories for 157,493 UCSD Health patients seen between 

01/01/2016–03/07/2019 were transformed into analytic vectors. 

(B) Model Construction: We developed models using Logistic Regression, Random Forest, and an Ensemble 

approach. 

(C) Evaluation: We assessed model performance and conducted feature-level analyses. 

Data 

Figure 2a outlines the data preparation process. We accessed information for 157,493 UCSD Health patients 

admitted between January 01, 2016 and July 03, 2019 (IRB approval #190457CX). Eligible patients were those 

with at least one admission during the study period and a minimum of six months of medication history. Excluded 

groups included individuals younger than 18, pregnant patients, incarcerated persons, and those missing age data. 

In total, 1,541 individuals (1%) were labeled as having a CDI Positive test result as defined in Figure 1. 
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To construct the predictors, we selected a focused set of variables covering demographic factors and medication 

exposures—attributes that naturally reflect a patient’s physiologic trajectory over time. The final dataset contained 

104 covariates: 10 demographic variables (age, race, gender, etc.) derived from UCSD Health metadata, and 94 

medication-related features summarizing usage patterns during the observation window. Medication names 

(originally 4,420 unique items) were consolidated into 94 pharmacologic classes to reduce dimensionality, avoid 

extensive imputation, improve interpretability, and retain essential clinical meaning. A pharmacologic class 

groups medications whose active components share similarities based on one or more characteristics: mechanism 

of action, physiologic impact, or chemical structure [23]. 

Model construction 

The model-building and hyperparameter-selection workflow is depicted in Figure 2b. We selected two 

algorithms—multivariate Logistic Regression (LR) and Random Forest (RF)—because they offer clearer 

interpretability for clinical users [24]. Their outputs allow clinicians to pinpoint influential factors and consider 

potential clinical actions. For LR, the magnitude and sign of each coefficient reflect its impact on predicted risk 

[25], while for RF, the Gini importance reflects how each variable contributes to the tree-based split decisions that 

lead to classification [26]. Both approaches offer more transparent logic than deep learning models, whose internal 

parameters typically provide little insight into how predictions are formed [27]. Another motivation for using LR 

and RF instead of temporal models such as recurrent neural networks [28] or transformers [29] is the absence of 

a coherent, interpretable preprocessing strategy for highly irregular patient histories. Patients differ widely in 

length of stay and number of admissions, and applying time-series models would require extensive imputation 

[30], further obscuring how original inputs relate to final predictions. 

To further boost discrimination, we created an Ensemble method combining LR and RF [31, 32]. Specifically, we 

used an Average Ensemble [33], taking the mean of the LR and RF prediction scores to form a final risk estimate 

for each patient. Besides possibly improving accuracy, this also reveals whether the two algorithms provide 

complementary information (higher or stable AUC) or conflicting signals (notable drop in AUC). 

To determine model hyperparameters, we randomly reserved 10% of the data as a held-out test set. Given the 

strong class imbalance, the loss function applied proportional class weights so the minority class was not ignored. 

Both LR and RF hyperparameters were tuned via grid search with 10-fold cross-validation on the remaining 90% 

of the dataset. During each fold, 81% of the data was used for training and 9% for validation. After identifying 

optimal settings, the LR and RF models were retrained using 90% of the full dataset, and performance was later 

evaluated on the 10% hold-out portion. 

We implemented all models using Scikit-learn [34], produced visualizations with Matplotlib [35], and performed 

statistical computations with SpiCy [36]. All analyses were carried out in Python within a secure, HIPAA-

compliant environment. 

Evaluation 

The evaluation procedure is summarized in Figure 2c. We used the Area Under the Receiver Operating 

Characteristic Curve (AUROC) [37] as the principal metric. For each algorithm (LR, RF, Ensemble), two AUROC 

values were reported: 

1. Cross-Validation AUROC: The average AUROC across the 10 cross-validation models was trained on 

81% of the data and evaluated on their respective 9% validation folds. 

2. Test AUROC: The AUROC was calculated from the final model trained on 90% of the data and tested 

on the 10% hold-out set. 

We also explored population demographics to contextualize the dataset. For the final LR model, we examined 

coefficient significance by comparing the estimated magnitudes, their associated odds ratios, and corresponding 

p-values. This included a univariate step followed by a multivariate analysis. The univariate stage served mainly 

to confirm consistency with multivariate findings and to avoid carrying forward predictors with very high p-

values. Because interactions among drug classes may alter gut microbiota [38, 39] or enhance toxin production in 

certain strains [40], and thereby influence CDI risk, we did not enforce covariate independence. 

For the RF model, we documented Gini importance scores [41] to identify features with stronger contributions to 

CDI risk [42]. Additionally, we performed a decision-boundary assessment to revisit the typical 0.5 classification 

threshold. Since clinicians may weigh false positives and false negatives differently, we examined how predictions 

change when the threshold moves from 0 to 1 in 0.01 increments. For each threshold, we recorded pairwise counts 
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of false positives and false negatives to allow clearer visualization of trade-offs than is available from the standard 

ROC curve. 

Results and Discussion 

Demographic characteristics 

When comparing the Positive and Control cohorts, the overall split between female and non-female participants 

(including those without reported gender) showed no major contrast. In contrast, the Positive group contained a 

significantly larger fraction of White individuals, and their mean age was also higher (58.43 compared with 53.59). 

Regarding prior clinical records, individuals classified as Positive typically had a greater count of medication 

entries per person. A consolidated overview of these characteristics is presented in Table 1. 

Table 1. Demographic overview for the Positive and Control cohorts. 

Patient Characteristic Positive C. difficile Cases (n = 1,541) Control Group (n = 155,952) 

Gender – Female 734 (47.63 %) 77,463 (49.67 %) 

Race – White (vs non-White)* 923 (59.9 %) 87,130 (55.9 %) 

Age (years) – Mean ± SD* 58.43 ± 17.23 53.59 ± 18.99 

Age (years) – Median 60.2 54.93 

Total medication units prescribed – Mean ± SD* 84.95 ± 107.3 28.77 ± 57.84 

Asterisks (“∗”) denote p < 0.001. 

Model performance 

During cross-validation, the Logistic Regression (LR) model achieved a mean AUROC of 0.793 (95% CI: 0.763–

0.823). The Random Forest (RF) model reached 0.833 (95% CI: 0.805–0.861), while the Ensemble configuration 

obtained 0.828 (95% CI: 0.802–0.854). For the final evaluation on the untouched test partition, AUROC values 

were 0.839 for LR and 0.851 for RF. The combined Ensemble model—integrating outputs from LR and RF—

yielded the highest AUROC at 0.866 (Figure 3). Across both phases, each approach demonstrated strong 

discriminatory performance. 

 
Figure 3. AUROC plots for the finalized LR, RF, and Ensemble models. 

Feature analysis 

Table 2a lists the twenty LR features showing the smallest p-values (all p < 0.0001) along with their multivariate 

odds ratios. Table 2b presents the twenty RF features with the highest Gini importance scores.  

Table 2. Feature analysis results for LR and RF models. A) Top 20 LR multivariate predictors with p < 0.001, 

ordered by increasing p-value. B) Top 20 RF predictors ordered by Gini importance. 

a) Logistic Regression – Multivariable Adjusted Odds Ratios   

Rank Feature Odds Ratio 
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1 Antidiarrheals 2.3529 

2 Misc. anti-infectives 1.2558 

3 Fluoroquinolones 1.2250 

4 Gout agents 1.2108 

5 Misc. GI agents 1.1577 

6 Penicillins 1.1491 

7 Local anesthetics – parenteral 1.0816 

8 Unassigned group 1.0391 

9 Minerals & electrolytes 1.0265 

10 Analgesics – opioids 1.0242 

11 Age (per year) 1.0144 

12 Antineoplastics 0.9684 

13 Anticoagulants 0.9377 

14 Diagnostic products 0.9326 

15 Anti-rheumatic agents 0.9299 

16 Laxatives 0.9268 

17 Ophthalmic agents 0.8889 

18 Other or mixed races (vs White) 0.8294 

19 Tetracyclines 0.7735 

20 Toxoids 0.5740 

b) Random Forest – Feature Importance   

Rank Feature Gini Index 

1 Minerals & electrolytes 0.1507 

2 Misc. anti-infectives 0.1493 

3 Unassigned group 0.0686 

4 Antiemetics 0.0396 

5 Analgesics – opioids 0.0369 

6 Diuretics 0.0319 

7 Age 0.0295 

8 Anticoagulants 0.0261 

9 Local anesthetics – parenteral 0.0256 

10 Fluoroquinolones 0.0190 

11 Assorted classes 0.0190 

12 Misc. GI agents 0.0179 

13 Antihistamines 0.0172 

14 Penicillins 0.0171 

15 Corticosteroids 0.0164 

16 Ulcer drugs / PPIs 0.0158 

17 Hematopoietic agents 0.0149 

18 Misc. Hematological agents 0.0147 

19 Antineoplastics 0.0144 

20 Analgesics – non-opioids 0.0142 

Decision boundary analysis 

Trade-off curves (Figure 4) illustrate how predicted false-negative and false-positive counts shift when the 

classification threshold is varied from 0.4 to 0.6 in 0.01 increments. Separate curves are shown for LR (Figure 

4a), RF (Figure 4b), and the Ensemble model (Figure 4c). Each plotted point represents the pairing of false-

negative and false-positive totals on the test set at a specific threshold.  
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a) 

 

b) 

 

c) 

Figure 4. Relationship between false-negative and false-positive predictions as the threshold is adjusted 

between 0.4 and 0.6 for (a) LR, (b) RF, and (c) Ensemble models. 

Findings 

All three modeling strategies produced consistently high AUROC values in both cross-validation and test 

evaluations, indicating that they are suitable tools for estimating the likelihood of a positive CDI finding. The RF 

model achieved the strongest cross-validated AUROC, whereas the Ensemble approach ranked highest in the final 
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test stage. Across models, AUROCs ranged from 0.793 to 0.866, and the Ensemble’s stability suggests that LR 

and RF contribute complementary predictive signals. These values exceed those described in earlier research 

relying on smaller datasets or larger variable sets (0.75–0.82 AUROC in prior studies [18, 20]). 

Low p-value predictors in the LR model included several clinically recognizable indicators of CDI risk: patient 

age [43], prior use of anti-infective medications such as penicillins and fluoroquinolones [44–46], signs of immune 

suppression due to cancer therapies and associated treatment-related diarrhea prompting more frequent testing 

[47], and markers of historical gastrointestinal issues (Misc. GI). Similar importance patterns emerged in the RF 

model through its Gini rankings. This overlap reinforces the clinical relevance of these predictors. In particular, 

antibiotic exposure again appears to exert substantial influence, underscoring the need for cautious prescribing. 

Previous research shows that reducing patient susceptibility—which is heightened by antibiotic-driven 

colonization and progression to CDI [48]—offers greater benefit for prevention than merely limiting transmission 

[49]. 

The threshold–performance curves serve as an easily interpretable reference for clinicians, infection-prevention 

teams, and laboratory staff when shaping testing strategies. By examining these plots, users can pinpoint cutoff 

values that curb false negatives while also lowering false positives relative to nearby thresholds. Examples include 

a threshold of 0.55 for the Logistic Regression model, which cuts roughly 100 false-positive predictions, and 

thresholds of 0.48 and 0.56 for the Ensemble model, each lowering false positives by about 50–100 cases. These 

visual tools may also support hospital leadership in conducting economic evaluations [50]. Threshold adjustments 

can be incorporated into cost projections related to diagnostic revisions [51]. Financially, a CDI-positive inpatient 

with health plan coverage is estimated to incur approximately $21,000 more in medical expenses than a 

comparable CDI-negative inpatient [52], with the cost rising further when the infection recurs [53]. Meanwhile, 

the price for a CDI stool assay lies between $15 and $128 (as of 2021) [54]. When combined with clinical 

familiarity and operational experience, applying threshold-based modeling can provide valuable guidance for 

balancing overtreatment risk against underdiagnosis. This principle is also applicable to other high-impact 

pathogens, where avoiding false negatives is critical even if it means tolerating more false positives—COVID-19 

being one notable case [55]. 

From an operational standpoint, these predictions may influence how care facilities manage patient flow, enhance 

decontamination efforts, or monitor high-risk individuals more closely. In fact, one recent investigation identified 

a single CT machine as the source of CDI transmission within a major academic medical center [56], underscoring 

the importance of environmental vigilance even when spread is not outwardly apparent. 

Limitations 

The study has several constraints: 

1. Choice of modeling strategies and calibration. To emphasize interpretability, the study relied on LR, 

RF, and an Ensemble method. More complex approaches—such as deep learning architectures (RNNs, 

transformers), or ensemble variations including boosting [57] and stacking [58]—were not explored. 

Model calibration metrics like the estimated calibration index (ECI) [59], recalibration techniques such 

as isotonic regression [60, 61], and alternative class-balancing tactics (e.g., upsampling or downsampling 

[62]) remain untested. 

2. Potential dependencies among predictors. Interactions or correlations between pharmacologic classes 

were not examined, and additional assessment may clarify how these interdependencies influence CDI 

susceptibility. 

3. Clinical deployment. Although real patient data were used during model construction, integrating these 

models seamlessly into day-to-day clinical operations requires further study. Additional work is 

necessary to determine whether these predictions are valid for high-risk individuals who might not 

typically undergo CDI testing. 

4. Generalizability and real-world rollout. Model evaluation thus far has been limited to retrospective 

UCSD data. The models have not yet been implemented at UCSD itself, nor assessed across other 

healthcare systems or international environments. 

5. Distinguishing colonization from active infection. The models identify positive test outcomes without 

differentiating between true infection and colonization by C. difficile. Although colonization is strongly 

correlated with infection, it is not a perfect proxy, and deeper analysis of this relationship is still required. 



Peterson et al., Interpretable Machine Learning Prediction of Clostridioides difficile Infection Using Three-Year 

Longitudinal EHR Data 

 

 

93 

6. Economic impact. The financial implications of modifying threshold cutoffs—particularly costs related 

to monitoring borderline patients—have not been fully assessed and will require a more detailed 

economic review. 

Conclusion 

The machine learning models developed in this study, based on extensive longitudinal medication histories and 

demographic data, demonstrate high predictive accuracy for identifying a patient’s first positive CDI test. The 

models were trained on a substantial dataset of 157493 UCSD Health patients, incorporating a 3-year 

observational window and 104 covariates. They produced AUROC values ranging from 0.839 to 0.866, and their 

outputs highlight clinically recognized risk indicators, including advanced age, antibiotic exposure, cancer-related 

treatments, and gastrointestinal conditions. The threshold-based analyses further offer clinicians flexibility to 

tailor their preferred balance between sensitivity and specificity. These concepts also generalize to other infectious 

threats—such as COVID-19—where the consequences of missed diagnoses can be severe. Given that both CDI 

and COVID-19 disproportionately affect individuals with comorbidities, early detection supported by such 

predictive tools may reduce transmission, avoid critical complications, and help lower healthcare expenditures 

while supporting institutional efforts to meet CDC standards. 
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