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ABSTRACT 

Determining, before surgery, which patients with esophageal squamous cell carcinoma (ESCC) will achieve a 

pathological complete response (pCR) after neoadjuvant chemoimmunotherapy (nCIT) remains a major unmet 

clinical need. Reliable prediction of pCR could enable risk-adapted treatment strategies and avoid unnecessary 

surgical intervention. The objective of this study was to design and independently validate a transparent 

multimodal learning system that jointly leverages radiological and histopathological imaging data to estimate 

pCR. We retrospectively collected data from 335 patients with ESCC treated with nCIT followed by surgical 

resection at three tertiary centers. One institution contributed cases that were split into model development (n=181) 

and internal validation (n=115) cohorts, whereas patients from the remaining centers constituted an external 

validation cohort (n=39). Quantitative features were extracted from contrast-enhanced CT scans and H&E-stained 

whole-slide images to construct radiomics-only and pathomics-only classifiers. Two strategies were implemented 

to integrate these modalities: a feature-level intermediate fusion approach and a prediction-level late fusion 

approach. Model discrimination and classification performance were evaluated using AUC, accuracy, sensitivity, 

specificity, and F1 score. Survival differences were explored according to both histologically confirmed and 

model-inferred pCR status. Model transparency was enforced through the use of interpretable feature definitions 

and explainable decision mechanisms. The intermediate fusion strategy demonstrated consistently superior 

performance compared with unimodal models and late fusion across all cohorts. In the development, internal 

validation, and external validation cohorts, the intermediate fusion model achieved AUC values of 0.97, 0.78, and 

0.76, respectively, with corresponding accuracy values of 0.93, 0.87, and 0.77. Both true pCR and predicted pCR 

groups exhibited distinct overall survival trends in exploratory analyses. Importantly, the model relied on 

explicitly defined radiological and histomorphological attributes, and its predictions were accompanied by case-

specific and population-level explanatory visualizations that clarified the underlying decision logic. A clinician-

oriented graphical interface was also implemented to support real-world application. This study presents a 

clinically interpretable radiopathomics-based prediction framework capable of estimating pCR following 

neoadjuvant chemoimmunotherapy in ESCC using routinely available imaging data. The proposed approach may 

assist clinicians in tailoring post-treatment management, particularly when weighing active surveillance against 

immediate surgery. 
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Introduction 

Esophageal squamous cell carcinoma (ESCC) continues to represent a major global health burden due to its high 

incidence and aggressive biological behavior [1]. For patients with locally advanced disease, neoadjuvant 

chemoradiotherapy (nCRT) followed by surgical resection remains the established standard of care [2, 3]. In recent 

years, however, emerging clinical evidence has positioned neoadjuvant chemoimmunotherapy (nCIT) combined 
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with surgery as a compelling alternative. Clinical trials have reported R0 resection rates between 80.9% and 

98.0%, alongside pathologic complete response (pCR) rates ranging from 16.7% to 50.0% [4, 5]. Moreover, a 

prospective comparison suggested that nCIT may confer improved 2-year overall survival (OS) and disease-free 

survival (DFS) relative to nCRT, despite comparable pCR rates (22.9% vs 25.9%) [6]. Importantly, attainment of 

pCR has been consistently associated with favorable long-term outcomes and may support nonoperative “watch-

and-wait” strategies, thereby preserving organ function and improving patient quality of life [4, 7, 8]. These 

considerations underscore the importance of accurately identifying pCR prior to surgery in patients undergoing 

nCIT. 

Although the clinical value of pCR prediction is well recognized, reliable biomarkers capable of forecasting 

response to nCIT remain limited. Commonly investigated tissue-based markers, such as microsatellite instability 

[9, 10], programmed cell death ligand-1 (PD-L1) expression [11, 12], and tumor mutational burden (TMB) [13–

15], demonstrate suboptimal predictive performance and are often constrained by high costs, technical demands, 

and limited accessibility. As a result, there is a pressing need for practical, reproducible, and economical 

approaches to response prediction that can be readily implemented in routine clinical workflows. 

Medical imaging constitutes a rich source of both macroscopic and microscopic information and is particularly 

amenable to artificial intelligence (AI)-driven analysis. Radiologic modalities such as contrast-enhanced 

computed tomography capture tumor-scale characteristics, while histopathological whole-slide images (WSIs) 

stained with hematoxylin and eosin provide detailed insights into cellular morphology and tissue architecture. 

These complementary data streams offer the potential for enhanced predictive performance through multimodal 

integration [16]. Radiomics and pathomics techniques enable the extraction of high-dimensional quantitative 

descriptors of tumor phenotype and microenvironment and have demonstrated predictive utility across multiple 

cancer types, including ESCC [17–19]. Building on prior evidence supporting radiomics-based prediction of pCR 

after nCIT [20], as well as studies highlighting the prognostic relevance of nuclear morphology and textural 

patterns [21, 22], the combined use of radiomics and pathomics features represents a logical strategy for improving 

preoperative response assessment in ESCC. 

However, successful clinical translation of multimodal AI models depends not only on predictive accuracy but 

also on transparency and interpretability. In this work, interpretability was explicitly incorporated as a core design 

principle, addressed at both the model and feature levels. At the model level, we favored algorithms with traceable 

decision-making processes and robust post hoc explanation techniques, such as Shapley-value–based attribution, 

to enable visualization of feature contributions at both the individual and population levels while reducing the 

opacity associated with deep learning approaches [23]. At the feature level, we prioritized radiomics features with 

clear mathematical definitions and pathomics descriptors grounded in interpretable histomorphological 

characteristics—such as nuclear size, shape, perimeter, and chromatin texture—to enhance clinical interpretability 

and facilitate communication with domain experts. 

Accordingly, the present study aimed to construct an interpretable multimodal machine learning framework for 

preoperative prediction of pCR to nCIT in ESCC using multicenter data. We systematically evaluated multiple 

machine learning algorithms and multimodal fusion strategies to integrate CT-based radiomics with WSI-derived 

pathomics features, while formalizing interpretability at both the algorithmic and feature-definition levels. To 

support clinical adoption and usability, we further designed case-level and cohort-level explanatory outputs, 

including contribution-based visualizations, and developed a user-facing software prototype to demonstrate 

potential integration into clinical workflows. 

Materials and Methods  

Owing to the retrospective nature of the study, the requirement for informed consent was waived. All procedures 

were conducted in accordance with the Declaration of Helsinki and complied with established methodological 

recommendations for radiomics research [24]. To enhance methodological transparency and rigor, study conduct 

was evaluated using a previously proposed 12-item methodological quality checklist [25]. An overview of the 

study design and analytical workflow is illustrated in Figure 1. 
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Figure 1. Overview of the research workflow. 

 

Pre-treatment contrast-enhanced CT scans and digitized H&E-stained whole-slide images (WSIs) were collected 

from 335 patients diagnosed with esophageal squamous cell carcinoma (ESCC) at three different medical centers. 

Tumor boundaries were hand-drawn on the CT slices, and the most tumor-dense areas were carefully picked from 

each WSI. Quantitative radiomics features were obtained using PyRadiomics, and pathomics features were 

calculated with CellProfiler; both feature sets were then filtered for quality and relevance. Four separate prediction 

models were constructed: a radiomics-only model, a pathomics-only model, an intermediate multimodal fusion 

model (MIFM), and a late multimodal fusion model (MLFM). These were tested on the training group, internal 

validation group, and independent external group using receiver operating characteristic (ROC) curves, confusion 

matrices, Sankey flow diagrams for reclassification, and survival outcome comparisons. To ensure transparency, 

we applied SHAP value analysis, visualized decision pathways for individual patients, and quantified different 

cell populations. A simple browser-based interface was built that takes CT images with drawn regions of interest 

(ROIs) and CellProfiler results as input and returns the estimated probability of pathologic complete response 

(pCR) for each patient. BNB, Bernoulli Naïve Bayes; ESCC, esophageal squamous cell carcinoma; GNB, 

Gaussian Naïve Bayes; KNN, k-nearest neighbors; LASSO, Least Absolute Shrinkage and Selection Operator; 

LR, logistic regression; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model; 

pCR, pathologic complete response; RF, random forest; ROC, receiver operating characteristic; ROI, region of 
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interest; SHAP, SHapley Additive exPlanations; SMOTE, Synthetic Minority Over-sampling Technique; SVM-

RFE, Support Vector Machines-Recursive Feature Elimination; XGBoost, eXtreme Gradient Boosting; WSIs, 

whole-slide images. 

 

Patient recruitment 

We retrospectively gathered data on all patients with biopsy-confirmed ESCC who completed neoadjuvant 

chemoimmunotherapy (nCIT) and then underwent surgery with curative intent at three major academic hospitals: 

Zhejiang Cancer Hospital, Renmin Hospital of Wuhan University, and Tianjin Medical University Cancer 

Institute and Hospital, spanning July 2019 to July 2023 (total 335 patients). At Zhejiang Cancer Hospital (296 

patients), cases were randomly assigned in a 6:4 ratio to either the training dataset or an independent internal test 

set (Test-set-1). The external test set (Test-set-2, 39 patients) came from Renmin Hospital of Wuhan University 

(July 2020–September 2023, 22 patients) and Tianjin Medical University Cancer Institute and Hospital (June 

2020–February 2022, 17 patients). Every patient had a contrast-enhanced chest CT performed no more than 14 

days before starting nCIT, and H&E-stained whole-slide images were created from endoscopic biopsy tissue taken 

within 7 days of the CT scan. Full eligibility and exclusion rules, along with a detailed patient selection diagram, 

appear in Figure 1. 

 

Treatment regimen and pathology assessment 

Each patient received a minimum of one cycle combining neoadjuvant immunotherapy with chemotherapy. 

Immunotherapy used standard 200 mg doses every 3 weeks of various PD-1 or PD-L1 inhibitors (tislelizumab, 

sintilimab, durvalumab, envafolimab, pembrolizumab, camrelizumab, or nivolumab). Chemotherapy followed 

platinum-based doublets: TC schedule (repeated every 3 weeks): 1–4 cycles of nab-paclitaxel 260 mg/m² or 

paclitaxel 135–175 mg/m² on day 1, combined with carboplatin AUC 5 mg/mL/min on day 1; TP schedule 

(repeated every 3 weeks): 1–4 cycles of nab-paclitaxel 260 mg/m² or paclitaxel 175 mg/m² on day 1, combined 

with cisplatin 75 mg/m² on day 1. 

Surgery (esophagectomy with curative aim) took place 4–8 weeks after the last nCIT cycle. The choice of open 

or minimally invasive technique and the extent of lymph node removal (two-field or three-field) depended on 

tumor location and the operating surgeon’s judgment. 

Pathologists with extensive experience examined the surgical specimens, with a senior esophageal cancer 

specialist providing final confirmation. Tumor regression was graded using the College of American Pathologists 

Esophageal Carcinoma Protocol [26]: TRG 0 = no remaining cancer cells (complete response); TRG 1 = only 

isolated cells or tiny clusters; TRG 2 = noticeable regression but more than minimal residual cancer; TRG 3 = 

abundant residual tumor with little or no regression 

Pathologic complete response (pCR) was defined exclusively as TRG 0 in the primary tumor site; all other grades 

(TRG 1–3) were grouped as non-pCR. This binary outcome was the main target for building and testing the 

prediction models. 

 

Image acquisition and tumor outlining 

Two radiologists (HS and XW), each with more than 3 years of experience, manually outlined the primary 

esophageal tumors on contrast-enhanced CT images to define regions of interest (ROIs). They were unaware of 

pathology results or any model predictions during this step. A senior radiologist (YJ) with over 25 years of 

experience reviewed every contour, made adjustments when required, and resolved any differences through 

discussion. The final agreed-upon ROIs became the standard for radiomics analysis. All outlining was done in 3D 

Slicer software (version 5.1.0) [27]. 

H&E-stained slides were fixed in formalin, embedded in paraffin, scanned at 20× magnification, and converted 

into whole-slide images (WSIs). A thoracic pathologist (BQ) with 3 years of experience, blinded to clinical and 

outcome data, identified five representative tumor-rich fields of view on each WSI. These fields were cropped 

into 512×512-pixel patches and saved as PNG files. Every patch passed a strict visual quality check to remove 

any with staining issues, folds, chatter, sparse tissue, bubbles, ink marks, or other artifacts. 

 

Feature calculation and refinement 

Radiomics features (1,094 total) were extracted from the finalized CT ROIs using PyRadiomics [28] (version 

3.0.1). These included shape and volume measurements, first-order intensity statistics, multiple texture matrices 
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(co-occurrence, size zone, run length, dependence, neighboring gray-tone difference), and wavelet-filtered 

versions. 

Pathomics features (4,892 total) were computed from the H&E WSIs with CellProfiler [29] (version 4.2.8) through 

an automated workflow that captured intensity patterns, spatial arrangements, cell and tissue shapes, texture 

properties, and fractional area measurements (Figure 2). The five patches per case were averaged to produce one 

set of slide-level features per patient. 

Feature selection occurred only in the training set and was performed separately for each modality. The steps 

were: Address class imbalance using Synthetic Minority Over-sampling Technique (SMOTE); Normalize all 

features with Z-score transformation; Apply univariate logistic regression to keep features with p < 0.05 

(radiomics) or p < 0.01 (pathomics); Remove redundant pairs by calculating Spearman correlation (discard one 

when |ρ| > 0.85, keeping the feature with stronger outcome association); Run two independent selectors—LASSO 

with 10-fold cross-validation and SVM-RFE—and use only the overlapping features for final model training.  

 

Model validation and construction 

For single-modality modeling, seven supervised machine learning approaches were systematically assessed for 

both the radiomics and pathomics feature spaces, including logistic regression, Gaussian and Bernoulli Naïve 

Bayes classifiers, support vector machines, random forest ensembles, k-nearest neighbors, and eXtreme Gradient 

Boosting (XGBoost). Hyperparameters for each algorithm were optimized via grid search coupled with fivefold 

cross-validation. To ensure experimental reproducibility, a fixed random seed was consistently applied during the 

tuning process.  

Two distinct strategies were explored to integrate radiomics and pathomics information in the multimodal setting. 

In the intermediate fusion framework (MIFM), features derived from both modalities were concatenated to form 

a unified feature vector, which was then used to train a model using the algorithm that demonstrated the strongest 

performance during unimodal evaluation. In contrast, the late fusion framework (MLFM) combined modalities at 

the prediction level: the optimal radiomics and pathomics models identified during unimodal screening were first 

independently trained, after which their output probabilities were integrated using a logistic regression meta-

classifier. Overall, four categories of predictive models were constructed: radiomics-only, pathomics-only, 

multimodal intermediate fusion, and multimodal late fusion. 

Model generalizability was assessed using two independent validation cohorts (Test-set-1 and Test-set-2), without 

any additional parameter tuning. Validation data underwent identical preprocessing steps as the development data; 

however, no resampling strategies (such as SMOTE) or further normalization procedures were applied to the test 

cohorts. Model discrimination and classification performance were evaluated using the area under the receiver 

operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score. Confidence intervals were 

estimated using bootstrap resampling with 1,000 iterations for each validation cohort, and 95% confidence 

intervals were reported for all metrics. Receiver operating characteristic and precision–recall curves were 

generated to facilitate visual comparison among models. For the highest-performing model, decision curve 

analysis (DCA) was additionally performed to evaluate potential clinical benefit across a range of threshold 

probabilities. 

 

Model interpretation 

To clarify how the integrated model arrived at its predictions, we adopted SHapley Additive exPlanations (SHAP) 

as a quantitative interpretability strategy. This approach estimates the marginal impact of each radiomics and 

pathomics variable on the predicted likelihood of pathological complete response, both for individual patients and 

across the study population. The Shapley value is defined as follows: 

 

∅𝑗 = ∑ 𝑆 ⊆ 𝑁\{𝑗} 
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝜈(𝑆 ∪ {𝑗}) − 𝜈(𝑆)) (1) 

 

where: 𝜈(𝑆 ∪ {𝑗}) − 𝜈(𝑆) denotes the incremental contribution of feature j within coalition S; ∑[𝑆 ⊆ 𝑁{𝑗}]  

represents the summation across all possible feature combinations; and 
|𝑆|!(𝑁−|𝑆|−1)!

𝑁!
 corresponds to the weighting 

coefficient assigned to each coalition. At the individual level, SHAP visual outputs illustrate how specific feature 

values drive the predicted probability above or below the model’s baseline estimate. At the cohort level, 
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aggregated SHAP analyses order features by their overall contribution and reveal whether their influence 

predominantly favors or opposes pCR. 

Beyond global attribution, we reconstructed patient-specific inference trajectories from the trained classifier to 

expose the internal decision logic in a sequential manner. For each case, these trajectories enumerate the ordered 

decision conditions evaluated by the model, explicitly identifying the contributing feature, its threshold value, and 

the magnitude of its incremental effect on the prediction (expressed in log-odds or probability units). The 

cumulative effect of these steps yields the final estimated pCR probability. This visualization enables direct 

identification of the features and value ranges that most decisively shifted a given prediction toward pCR or non-

pCR, thereby bridging population-level importance with individualized reasoning. 

To further investigate histopathological correlates underlying model predictions, we analyzed the tumor 

microenvironment (TME) in H&E-stained whole-slide images using Hover-Net [30], an open-source deep 

learning framework for nuclear segmentation and coarse cell classification. Within the analyzed image regions, 

nuclei were categorized into tumor cells, lymphocytes, connective tissue cells, necrotic cells, and an additional 

miscellaneous group. The relative abundance of these cell populations was subsequently compared according to 

pathological response (observed pCR versus observed non-pCR) and, independently, according to model-based 

stratification (predicted pCR versus predicted non-pCR). 

 

Statistical analysis 

Baseline clinical characteristics were analyzed using SPSS software (version 27). Categorical variables were 

compared using Pearson’s chi-square test or likelihood-ratio test, as appropriate, while continuous variables were 

evaluated using analysis of variance (ANOVA) or the Kruskal–Wallis H test. The predictive relevance of clinical 

covariates was assessed through univariable logistic regression analysis. A two-sided p value below 0.05 was 

considered statistically significant. 

Overall survival comparisons were conducted between patients with observed pCR and non-pCR, as well as 

between groups stratified by model-predicted response status. Survival curves were generated using the Kaplan–

Meier method, with group differences evaluated using the log-rank test based on a prespecified probability 

threshold. Hazard ratios (HRs) and corresponding 95% confidence intervals were estimated using Cox 

proportional hazards regression models. 

Survival analyses were performed in R software (version 4.4.2) using the “survival” package (version 3.8.3), with 

visualization facilitated by the “survminer” package (version 0.5.0). Machine learning analyses were implemented 

in Python (version 3.13.1) using the “scikit-learn” library (version 1.6.1) and the “xgboost” package (version 

3.0.0).  

Results and Discussion 

Patient characteristics 

Baseline demographic and clinicopathological characteristics stratified by pathological response are summarized 

in Table 1. Among the 335 included patients, 77 (22.99%) achieved pathological complete response, whereas 258 

(77.01%) were classified as non-pCR. Comparisons between groups revealed no significant differences across 

most clinical variables, with the exception of smoking history, number of nCIT cycles administered, and the 

number of suspicious lymph nodes (s-LNs), which differed significantly between response groups (p < 0.05). 

 

Table 1. Clinical and demographic profile of patients included across all cohorts 

Characteristic P value 
Overall 

(N=335) 

Test set-2 

(n=39) 

Test set-1 

(n=115) 

Training set 

(n=181) 

Sex 0.189     

Male  312 (93.13%) 34 (87.18%) 
110 

(95.65%) 
168 (92.82%) 

Female  23 (6.87%) 5 (12.82%) 5 (4.35%) 13 (7.18%) 

Age (median [range]) 0.825 64 [44–82] 62 [48–76] 65 [46–77] 64 [44–82] 

Drinking status 0.047*     

Current or former  239 (71.34%) 22 (56.41%) 80 (69.57%) 137 (75.69%) 

Never  96 (28.66%) 17 (43.59%) 35 (30.43%) 44 (24.31%) 

Smoking status 0.286     
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Current or former  220 (65.67%) 27 (69.23%) 69 (60.00%) 124 (68.51%) 

Never  115 (34.33%) 12 (30.77%) 46 (40.00%) 57 (31.49%) 

Tumor location 0.251     

Lower  120 (35.82%) 17 (43.59%) 47 (40.87%) 56 (30.94%) 

Middle  169 (50.45%) 19 (48.72%) 51 (44.35%) 99 (54.70%) 

Upper  46 (13.73%) 3 (7.69%) 17 (14.78%) 26 (14.36%) 

ECOG performance status 0.269     

0  146 (43.58%) 21 (53.85%) 44 (38.26%) 81 (44.75%) 

1  184 (54.93%) 18 (46.15%) 70 (60.87%) 96 (53.04%) 

2  5 (1.49%) 0 (0%) 1 (0.87%) 4 (2.21%) 

Clinical T stage (cT) 0.127     

1  3 (0.90%) 0 (0%) 1 (0.87%) 2 (1.10%) 

2  50 (14.92%) 2 (5.13%) 19 (16.52%) 29 (16.02%) 

3  267 (79.70%) 32 (82.05%) 90 (78.26%) 145 (80.11%) 

4a  15 (4.48%) 5 (12.82%) 5 (4.35%) 5 (2.77%) 

Clinical TNM stage (AJCC 8th 

edition) 
0.475     

I  3 (0.90%) 0 (0%) 1 (0.87%) 2 (1.10%) 

II  74 (22.09%) 8 (20.52%) 26 (22.61%) 40 (22.10%) 

III  228 (68.06%) 23 (58.97%) 78 (67.82%) 127 (70.16%) 

IVA  30 (8.95%) 8 (20.51%) 10 (8.70%) 12 (6.64%) 

Clinical N stage (cN) 0.707     

0  47 (14.03%) 7 (17.95%) 16 (13.92%) 24 (13.26%) 

1  170 (50.75%) 15 (38.46%) 60 (52.17%) 95 (52.49%) 

2  105 (31.34%) 14 (35.90%) 35 (30.43%) 56 (30.94%) 

3  13 (3.88%) 3 (7.69%) 4 (3.48%) 6 (3.31%) 

Neoadjuvant immunotherapy 

cycles 
<0.001*     

≤2  271 (80.90%) 22 (56.41%) 96 (83.48%) 153 (84.53%) 

>2  64 (19.10%) 17 (43.59%) 19 (16.52%) 28 (15.47%) 

Immunotherapy regimen 0.199     

PD-L1 inhibitor  37 (11.04%) 1 (2.56%) 14 (12.17%) 22 (12.15%) 

PD-1 inhibitor  298 (88.96%) 38 (97.44%) 
101 

(87.83%) 
159 (87.85%) 

R0 resection 0.556     

Yes  314 (93.73%) 38 (97.44%) 
108 

(93.91%) 
168 (92.82%) 

No  21 (6.27%) 1 (2.56%) 7 (6.09%) 13 (7.18%) 

Lymphadenectomy extent 0.243     

Two-field  36 (10.75%) 7 (17.95%) 13 (11.30%) 16 (8.84%) 

Three-field  299 (89.25%) 32 (82.05%) 
102 

(88.70%) 
165 (91.16%) 

Surgical approach 0.103     

Minimally invasive  310 (92.54%) 33 (84.62%) 
106 

(92.17%) 
171 (94.48%) 

Open  25 (7.46%) 6 (15.38%) 9 (7.83%) 10 (5.52%) 

Pathological complete response 

(tumor pCR) 
0.144     

Yes  77 (22.99%) 13 (33.33%) 21 (18.26%) 43 (23.76%) 

No  258 (77.01%) 26 (66.67%) 94 (81.74%) 138 (76.24%) 

Pathological N stage (ypN) 0.465     

0  189 (56.42%) 18 (46.15%) 67 (58.26%) 104 (57.46%) 

1  91 (27.16%) 15 (38.46%) 32 (27.83%) 44 (24.31%) 

2  41 (12.24%) 5 (12.83%) 10 (8.70%) 26 (14.36%) 

3  14 (4.18%) 1 (2.56%) 6 (5.21%) 7 (3.87%) 

Pathological T stage (ypT) 0.052     
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0  77 (22.99%) 13 (33.33%) 21 (18.26%) 43 (23.76%) 

1  70 (20.90%) 13 (33.33%) 24 (20.87%) 33 (18.23%) 

2  62 (18.51%) 7 (17.96%) 23 (20.00%) 32 (17.68%) 

3  126 (37.60%) 6 (15.38%) 47 (40.87%) 73 (40.33%) 

Pathological TNM stage (ypTNM, 

AJCC 8th edition) 
0.550     

I  151 (45.07%) 16 (41.03%) 51 (44.35%) 83 (45.86%) 

II  50 (14.93%) 3 (7.69%) 20 (17.39%) 27 (14.92%) 

III  134 (40.00%) 20 (51.28%) 44 (38.26%) 71 (39.22%) 

Survival time, days (median 

[range]) 
0.137 692 [96–1772] 

381 [136–

1240] 

716 [96–

1172] 
727 [100–1661] 

Number of dissected lymph nodes 

(median [range]) 
0.042* 23 [5–78] 23 [8–61] 22 [5–78] 24 [6–63] 

• Values are presented as counts with corresponding percentages unless indicated otherwise. 

• P values were derived from comparisons among the training cohort, Test-set-1, and Test-set-2. 

• The s-LN count refers to the total number of lymph nodes excised during surgical resection. 

• A two-sided P value <0.05 was used to denote statistical significance. 

• AJCC: American Joint Committee on Cancer cN: node stage, clinical cT: tumor stage, clinical cTNM: Tumor-Node-Metastasis, clinical 

ECOG: Eastern Cooperative Oncology Group NCIT: chemoimmunotherapy, neoadjuvant pCR: complete response, pathologic PD-1: 

protein 1, programmed cell death PD-L1: ligand 1, programmed cell death s-LN number: lymph nodes dissected surgically, number of 

ypN: node stage, pathologic after neoadjuvant therapy ypT: tumor stage, pathologic after neoadjuvant therapy ypTNM: Tumor-Node-

Metastasis, pathologic after neoadjuvant therapy 

 

Performance of single-modality models 

Following the feature reduction process, the unimodal signatures consisted of 14 radiomics features and 11 

pathomics features. Performance comparisons across the seven candidate machine learning classifiers 

demonstrated that the XGBoost algorithm achieved the most stable and robust predictive performance across the 

training cohort as well as both validation cohorts (Figures 2a and 2b). Consequently, XGBoost was chosen to 

construct the final radiomics-only and pathomics-only models using their respective optimized feature subsets. 

  

   

a) b) c) 

   

d) e) f) 

   
g) h) i) 
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j) k) l) 

  
m) n) 

Figure 2. Overall predictive performance of the proposed models for pathological complete response (pCR). 

Panels a and b display radar plots summarizing the AUCs of seven machine learning classifiers trained using 

pathomics features alone and radiomics features alone, respectively, in the training cohort. Panel C presents a 

Sankey diagram illustrating how predictions from the unimodal models are redistributed after integration into 

the multimodal intermediate fusion model (MIFM), with reference to the true pCR status. Discriminative 

ability of the unimodal and multimodal approaches is illustrated using ROC curves for the training cohort (d), 

test cohort 1 (e), and test cohort 2 (f). Corresponding precision–recall curves are shown in panels g–i. Panels 

j–l report confusion matrices for the MIFM across the training and two independent test cohorts. Panels m 

and n depict flow charts comparing MIFM-assigned classes with observed outcomes in test cohorts 1 and 2, 

highlighting the distribution of correctly and incorrectly classified cases. AUC, area under the curve; 

AUPRC, area under the precision–recall curve; BNB, naïve Bayes, Bernoulli; GNB, naïve Bayes, Gaussian; 

KNN, neighbors, k-nearest; LR, regression, logistic; MIFM, model, multimodal intermediate fusion; MLFM, 

model, multimodal late fusion; pCR, complete response, pathological; PR, precision–recall; RF, forest, 

random; ROC, receiver operating characteristic; SVM, machine, support vector; XGB, Boosting, eXtreme 

Gradient. 

 

Across cohorts, the pathomics-based model demonstrated an AUC of 0.88 (95% CI, 0.82–0.94) in the training 

cohort, which declined to 0.68 (95% CI, 0.55–0.81) and 0.67 (95% CI, 0.48–0.86) in test cohorts 1 and 2, 

respectively. The radiomics-based model showed slightly stronger discrimination, achieving AUCs of 0.90 (95% 

CI, 0.84–0.95) in training, 0.74 (95% CI, 0.62–0.85) in test cohort 1, and 0.68 (95% CI, 0.51–0.85) in test cohort 

2 (Figures 2d–2f). In the training cohort, radiomics also outperformed pathomics in terms of classification 

sensitivity, accuracy, and specificity (0.84, 0.77, and 0.86 vs. 0.81, 0.72, and 0.83), with detailed metrics 

summarized in Table 2. 

 

Table 2. Quantitative evaluation of model performance for predicting pathological complete response. 

Dataset Model 

Area Under the 

Curve (95% 

Confidence Interval) 

Overall 

Accuracy 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

F1 Score 

(95% CI) 

Training 

Set 

Unimodal 

Pathomics Model 
0.88 (0.82–0.94) 

0.81 (0.75–

0.86) 

0.72 (0.58–

0.85) 

0.83 (0.77–

0.89) 

0.64 (0.52–

0.74) 

 Unimodal 

Radiomics Model 
0.90 (0.84–0.95) 

0.84 (0.79–

0.90) 

0.77 (0.64–

0.89) 

0.86 (0.80–

0.92) 

0.69 (0.58–

0.80) 

 
Multi-Input 

Fusion Model 

(MIFM) 

0.97 (0.94–0.99) 
0.93 (0.90–

0.97) 

0.84 (0.71–

0.95) 

0.96 (0.93–

0.99) 

0.86 (0.77–

0.93) 
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Multi-Level 

Fusion Model 

(MLFM) 

0.93 (0.88–0.97) 
0.89 (0.85–

0.93) 

0.79 (0.67–

0.91) 

0.92 (0.87–

0.96) 

0.77 (0.68–

0.86) 

Test Set 

1 

Unimodal 

Pathomics Model 
0.68 (0.55–0.81) 

0.68 (0.59–

0.77) 

0.52 (0.32–

0.75) 

0.71 (0.61–

0.80) 

0.37 (0.21–

0.52) 

 Unimodal 

Radiomics Model 
0.74 (0.62–0.85) 

0.69 (0.61–

0.77) 

0.62 (0.39–

0.83) 

0.70 (0.61–

0.80) 

0.42 (0.26–

0.57) 

 
Multi-Input 

Fusion Model 

(MIFM) 

0.78 (0.64–0.90) 
0.87 (0.81–

0.92) 

0.62 (0.41–

0.83) 

0.93 (0.87–

0.98) 

0.63 (0.44–

0.79) 

 
Multi-Level 

Fusion Model 

(MLFM) 

0.77 (0.66–0.86) 
0.70 (0.61–

0.77) 

0.57 (0.35–

0.78) 

0.72 (0.63–

0.81) 

0.41 (0.24–

0.56) 

Test Set 

2 

Unimodal 

Pathomics Model 
0.67 (0.48–0.86) 

0.69 (0.56–

0.82) 

0.54 (0.27–

0.82) 

0.77 (0.60–

0.92) 

0.54 (0.27–

0.74) 

 Unimodal 

Radiomics Model 
0.68 (0.51–0.85) 

0.59 (0.44–

0.74) 

0.54 (0.29–

0.80) 

0.62 (0.42–

0.81) 

0.47 (0.22–

0.67) 

 
Multi-Input 

Fusion Model 

(MIFM) 

0.76 (0.55–0.94) 
0.77 (0.64–

0.90) 

0.54 (0.27–

0.83) 

0.88 (0.74–

1.00) 

0.61 (0.33–

0.82) 

 
Multi-Level 

Fusion Model 

(MLFM) 

0.73 (0.56–0.89) 
0.64 (0.49–

0.79) 

0.54 (0.25–

0.82) 

0.69 (0.50–

0.86) 

0.50 (0.24–

0.71) 

 

MLFM, multimodal late fusion model; MIFM, multimodal intermediate fusion model; AUC, area under curve. 

Because of the imbalance between response classes, precision–recall analysis was performed as a complementary 

evaluation. The pathomics-based classifier achieved AUPRC values of 0.73 in the training cohort, decreasing to 

0.37 in test cohort 1 and 0.50 in test cohort 2. The radiomics-based classifier consistently showed higher PR 

performance, with AUPRCs of 0.81, 0.45, and 0.55 in the corresponding cohorts (Figures 2g–2i).  

 

Multimodal model performance 

Using the fusion strategies defined a priori, we constructed both intermediate- and late-fusion multimodal 

frameworks. In all datasets, these multimodal approaches surpassed the unimodal radiomics and pathomics 

models across all assessed metrics (Table 2 and Figures 2d–2i). Direct comparison between the two fusion 

strategies revealed superior overall classification performance for the multimodal intermediate fusion model 

(MIFM), which achieved higher sensitivity, specificity, accuracy, and F1 score than the multimodal late fusion 

model (MLFM) (Table 2). Evaluation of the MIFM confusion matrices (Figures 2j–2n) demonstrated a strong 

ability to correctly identify non-pCR cases, with 87 true negatives in test cohort 1 and 23 in test cohort 2, resulting 

in the highest specificity among all evaluated models (Table 2). The Sankey visualization illustrated how 

integrating modalities corrected a substantial proportion of unimodal misclassifications, with a clear net shift 

toward concordance with true labels (Figure 2c).  

 

Exploratory survival stratification based on observed and predicted pCR 

We further explored whether overall survival (OS) differed according to either pathological pCR status or pCR 

predicted by the MIFM using a predefined decision threshold. In the training cohort, patients who achieved a 

pathological pCR exhibited prolonged OS, as reflected by a clear separation of Kaplan–Meier curves (Figure 3a). 

However, this distinction was not statistically significant in either external test cohort (Figures 3c and 3d). When 

patients were stratified according to the model-predicted pCR status, a comparable trend was observed, although 

no cohort demonstrated statistically significant survival separation (Figures 3b, 3d and 3f). Consistent with these 

findings, univariate Cox proportional hazards analysis showed that both observed pCR and MIFM-predicted pCR 

were significantly associated with OS (p < 0.005). 
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Figure 3. Evaluation of prognostic stratification capability. Kaplan–Meier survival curves for overall survival 

are shown according to pathological response status (pCR vs. non-pCR) in the training cohort (a), test cohort 

1 (c), and test cohort 2 (e). Corresponding survival analyses based on pCR status predicted by the multimodal 

intermediate fusion model (MIFM) are presented for the training cohort (b), test cohort 1 (d), and test cohort 

2 (f). 

Abbreviations: KM, Kaplan–Meier; MIFM, multimodal intermediate fusion model; OS, overall survival; pCR, 

pathological complete response. 

 

Model interpretability and clinical software implementation 

Feature attribution analysis using SHAP demonstrated how individual radiomics and pathomics variables 

influenced MIFM output probabilities (Figure 4a). Examination of inter-feature relationships revealed weak to 

moderate correlations between radiomics and pathomics inputs (ranging from −0.57 to 0.69) (Figure 4b), 

indicating that each modality contributes largely nonredundant information. This pattern supports the premise that 

integrating imaging- and tissue-derived features enables a more comprehensive representation of tumor 

characteristics and therapeutic response. 
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Figure 4. Model interpretability and explanatory analyses. (a) SHAP-based interpretation of the multimodal 

intermediate fusion model (MIFM), with a beeswarm visualization depicting feature-specific influences on 

individual predictions (right) and a ranked bar plot summarizing overall feature importance using mean 

absolute SHAP values (left); the inset illustrates relative modality contributions. (b) A Spearman correlation 

network illustrating relationships between retained radiomics and pathomics features, where edge thickness 

represents correlation strength. (c) Distribution of whole-slide image–derived cellular composition, including 

tumor, lymphocyte, stromal, necrotic, and other components, shown as boxplots and stratified by pathological 

response (left) and by MIFM-predicted response (right). (d) Representative case examples highlighting both 

conflicting and concordant unimodal predictions: Patient A (true pCR) demonstrates how MIFM integrates 

discordant radiomics and pathomics evidence, while Patient B (true non-pCR) illustrates agreement across 

modalities. For each case, spatial feature visualizations, rankings of the top 20 contributing variables, and 
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decision-path diagrams depict how modality-specific information is progressively integrated into the final 

output. MIFM, multimodal intermediate fusion model; pCR, pathological complete response; SHAP, 

SHapley Additive exPlanations; WSI, whole-slide image. 

 

Comparative analysis of cellular composition revealed consistent trends when stratifying by either observed 

pathological response or model-derived predictions (Figure 4c). In both comparisons, pCR groups—whether 

defined by histopathology or by MIFM output—were characterized by relatively increased tumor and lymphocyte 

proportions and reduced necrotic content compared with their respective non-pCR counterparts. 

Figure 4d illustrates the interpretability workflow using two illustrative cases to clarify how predictions are 

generated. In the first example, disagreement between unimodal radiomics and pathomics classifiers was resolved 

through weighted integration within the multimodal framework. In the second example, both unimodal models 

reached the same conclusion. For each case, heatmaps highlight spatial patterns of influential imaging and tissue 

features, feature-attribution plots quantify how individual variables shifted the prediction toward or away from 

pCR, and decision-path visualizations outline the sequential aggregation of evidence that produced the final 

probability estimate. Collectively, these elements connect low-level feature signals with transparent, case-specific 

model reasoning. 

To facilitate practical use, we developed a web-based graphical interface that operates without programming 

expertise. Users provide a pretreatment CT scan, the corresponding tumor region-of-interest mask, and a 

CellProfiler-generated CSV file, after which the system outputs an individualized pCR probability together with 

basic data validation results. The software prototype is intended for research purposes only. 

 

Accurate preoperative identification of pathological complete response (pCR) after neoadjuvant 

chemoimmunotherapy (nCIT) remains an unmet clinical challenge in esophageal squamous cell carcinoma 

(ESCC). In this multicenter retrospective study spanning three academic institutions, we addressed this gap by 

developing and externally validating an interpretable multimodal machine learning approach that jointly leverages 

contrast-enhanced CT–derived radiomics and H&E-stained whole-slide image (WSI)–based pathomics. By 

integrating routinely acquired imaging and biopsy data, the proposed framework enables noninvasive estimation 

of pCR likelihood prior to surgery. Compared with single-modality models, the intermediate fusion strategy 

demonstrated more consistent and generalizable performance across the development cohort and two independent 

validation cohorts, supporting the premise that radiologic and histopathologic information provide complementary 

signals relevant to treatment response. 

A defining feature of the present work is its emphasis on clinical feasibility and transparency. All input data are 

part of standard diagnostic workflows, eliminating the need for additional assays, specialized imaging, or 

increased cost. Moreover, model interpretability was embedded as a design constraint rather than a post hoc 

consideration. Both radiomics and pathomics features were explicitly defined using mathematical and 

morphologic descriptors, and model outputs were accompanied by explanations at multiple levels, including 

global feature importance, spatial feature localization, and case-specific decision pathways. To facilitate 

exploratory clinical use, we further implemented a browser-based graphical interface that requires no 

programming expertise and returns individualized pCR probabilities. Together, these elements provide a 

pragmatic and interpretable foundation for future clinical decision support in nCIT-treated ESCC. 

The clinical motivation for this work arises from the evolving neoadjuvant treatment landscape in esophageal 

cancer. The CROSS trial firmly established neoadjuvant chemoradiotherapy (nCRT) as superior to surgery alone 

in locally advanced ESCC [31]. However, despite improved local control, distant metastasis remains the 

predominant mode of failure after nCRT, occurring far more frequently than local recurrence (22.0% vs 5.9%). 

This observation has prompted ongoing efforts to intensify systemic therapy. Subsequent studies demonstrated 

that more intensive chemotherapy regimens can further improve overall survival (OS) and local disease control 

compared with nCRT [32, 33], raising interest in treatment de-escalation strategies such as omission of 

esophagectomy in patients achieving pCR [34]. Unfortunately, reliable noninvasive tools to identify pCR are 

lacking. 

Concurrently, immunotherapy has reshaped systemic treatment paradigms for esophageal cancer. Several studies 

have reported encouraging outcomes with combined chemotherapy and immunotherapy in the first-line treatment 

of advanced disease [35, 36], suggesting potential applicability in the neoadjuvant setting. Direct comparisons 

between nCIT and nCRT for locally advanced ESCC are ongoing. In a prospective multicenter study across eight 



Nielsen et al., Explainable Multimodal Machine Learning Integrating Radiomics and Pathomics for Prediction of Pathologic 

Complete Response in Esophageal Squamous Cell Carcinoma Treated With Neoadjuvant Chemoimmunotherapy 

 

 

126 

high-volume centers, Guo et al reported superior 2-year OS and disease-free survival with nCIT compared with 

nCRT, while pCR rates were similar and major pathological response favored nCRT [6]. Although the optimal 

neoadjuvant regimen remains unsettled, these findings collectively point to a growing role for 

chemoimmunotherapy and reinforce the need for predictive tools tailored to this treatment context. 

From a clinical management perspective, the inability to determine pCR status before surgery limits individualized 

treatment strategies. Patients who ultimately achieve pCR may be candidates for nonoperative management, 

potentially avoiding the morbidity of esophagectomy and preserving quality of life [37–39]. In contrast, patients 

unlikely to achieve pCR benefit from timely surgical resection to eradicate residual disease. Accurate preoperative 

stratification is therefore essential for balancing the risks of overtreatment and undertreatment. Our multimodal 

framework directly addresses this clinical need by providing a noninvasive estimate of pCR probability, thereby 

informing decisions between surveillance and prompt surgery. 

Multimodal data integration has shown promise for response prediction in multiple oncologic settings. Mao et al 

combined MRI, WSIs, and clinical variables to predict pCR after neoadjuvant chemotherapy in breast cancer [40], 

though their reliance on deep learning–derived features limited semantic interpretability. In ESCC, Qi et al 

demonstrated the feasibility of combining CT imaging with WSIs to predict pCR after nCIT [41], but their study 

involved a relatively small paired dataset and pathomics features extracted via deep learning. In contrast, the 

present study represents one of the largest multimodal investigations of pCR prediction after nCIT in ESCC to 

date, incorporating paired pretreatment CT scans and biopsy WSIs from three centers with external validation. By 

relying on handcrafted, explicitly defined radiomics and pathomics features, our approach enhances 

interpretability while maintaining competitive predictive performance. 

Notably, the multimodal intermediate fusion model (MIFM) consistently achieved higher specificity than 

unimodal models across all cohorts (Table 2). This operating characteristic is clinically meaningful, as it reduces 

the likelihood of falsely classifying non-pCR patients as pCR, thereby minimizing inappropriate adoption of 

watch-and-wait strategies. Patients predicted as pCR could instead be considered for cautious surveillance 

protocols with confirmatory assessments, while those predicted as non-pCR could proceed directly to surgery. 

Determining safe operating thresholds and workflows for such strategies will require prospective evaluation. 

To address the challenges posed by high-dimensional feature spaces and limited cohort sizes [42, 43], we 

implemented a stringent feature selection pipeline confined to the training cohort. From an initial pool of 1,094 

radiomics and 4,892 pathomics features, two complementary selection methods—LASSO regression and SVM 

recursive feature elimination—were applied, and only overlapping features were retained. Multimodal integration 

was performed using both intermediate and late fusion approaches, combining 14 radiomics and 11 pathomics 

features. Although late fusion has been reported to offer robustness in some contexts [44], our findings indicate 

that intermediate fusion—by explicitly modeling interactions between modalities—can yield superior specificity 

in this setting (Table 2 and Figures 2d–2i). Preserving modality-specific information while exploiting cross-

modality complementarity may therefore enhance both discrimination and robustness. 

Interpretability analyses further linked model behavior to biologically plausible imaging and histologic 

characteristics. SHAP analysis highlighted radiomics features capturing textural heterogeneity and intensity 

distribution, such as wavelet-based size zone nonuniformity and high-percentile intensity metrics, which may 

reflect tumor heterogeneity, vascularity, or necrosis. Pathomics features describing nuclear texture and 

morphology, including measures of hematoxylin staining uniformity and nuclear asymmetry, were also 

influential. These features align with known associations between nuclear irregularity, proliferative activity, and 

malignant potential [45], providing a conceptual bridge between quantitative image features and tumor biology. 

Case-level explanations illustrated how multimodal integration resolves conflicting evidence. In a representative 

pCR case, discordant predictions from unimodal radiomics and pathomics models were reconciled by the MIFM 

through weighted integration of modality-specific features, resulting in a correct final classification. In contrast, 

a non-pCR case with concordant unimodal predictions demonstrated balanced contributions from both modalities. 

Decision-path visualizations explicitly traced how feature thresholds accumulated to cross—or remain below—

the decision boundary, offering transparency into the model’s reasoning process. These examples underscore the 

synergistic relationship between macroscopic radiologic patterns and microscopic tissue characteristics. 

We also explored associations between tumor microenvironment (TME) composition and response status. The 

TME, comprising malignant cells, stromal components, vasculature, and immune infiltrates, plays a central role 

in tumor progression and response to immunotherapy [46–48]. Using H&E-stained WSIs, we quantified cell-type 

fractions and compared distributions according to observed and model-predicted pCR status. In both analyses, 
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pCR groups tended to show higher tumor and lymphocyte fractions and lower necrotic content, consistent with 

prior reports linking lymphocytic infiltration and preserved tumor architecture to treatment sensitivity [49, 50]. 

Although these trends did not reach statistical significance—likely due to limited sample size, biopsy 

heterogeneity, and segmentation variability—they are biologically plausible and warrant further investigation in 

larger prospective cohorts. 

Several limitations should be acknowledged. The retrospective design and modest size of the external validation 

cohorts introduce potential bias and limit generalizability. Established immunotherapy biomarkers such as tumor 

mutational burden and PD-L1 expression were not incorporated because they were not uniformly available and 

would increase cost; future integration of such markers may improve performance. Manual segmentation and 

quality control of CT images and WSIs, despite standardized protocols, introduce subjectivity, highlighting the 

need for automated pipelines. Additionally, stain normalization and color augmentation were not applied and 

should be explored in future studies. Survival analyses were exploratory, as statistically significant Kaplan–Meier 

separation was observed only for observed pCR in the training cohort, likely reflecting limited event numbers and 

the multifactorial determinants of long-term outcomes. Finally, while this study emphasizes interpretability using 

handcrafted features, future work may benefit from interpretable deep learning approaches and validation of 

generated biological hypotheses using genomic data. 

Conclusion 

In summary, we present an interpretable multimodal machine learning framework that integrates contrast-

enhanced CT radiomics with H&E-stained WSI pathomics to predict pCR before surgery in ESCC patients 

undergoing nCIT. By combining clinical practicality, external validation, and transparent model reasoning, this 

approach demonstrates potential to support individualized treatment decisions between surveillance and timely 

surgery. Prospective, large-scale studies will be essential to confirm clinical utility and enable translation into 

routine practice. 
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