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ABSTRACT

Determining, before surgery, which patients with esophageal squamous cell carcinoma (ESCC) will achieve a
pathological complete response (pCR) after neoadjuvant chemoimmunotherapy (nCIT) remains a major unmet
clinical need. Reliable prediction of pCR could enable risk-adapted treatment strategies and avoid unnecessary
surgical intervention. The objective of this study was to design and independently validate a transparent
multimodal learning system that jointly leverages radiological and histopathological imaging data to estimate
pCR. We retrospectively collected data from 335 patients with ESCC treated with nCIT followed by surgical
resection at three tertiary centers. One institution contributed cases that were split into model development (n=181)
and internal validation (n=115) cohorts, whereas patients from the remaining centers constituted an external
validation cohort (n=39). Quantitative features were extracted from contrast-enhanced CT scans and H&E-stained
whole-slide images to construct radiomics-only and pathomics-only classifiers. Two strategies were implemented
to integrate these modalities: a feature-level intermediate fusion approach and a prediction-level late fusion
approach. Model discrimination and classification performance were evaluated using AUC, accuracy, sensitivity,
specificity, and F1 score. Survival differences were explored according to both histologically confirmed and
model-inferred pCR status. Model transparency was enforced through the use of interpretable feature definitions
and explainable decision mechanisms. The intermediate fusion strategy demonstrated consistently superior
performance compared with unimodal models and late fusion across all cohorts. In the development, internal
validation, and external validation cohorts, the intermediate fusion model achieved AUC values 0of 0.97, 0.78, and
0.76, respectively, with corresponding accuracy values of 0.93, 0.87, and 0.77. Both true pCR and predicted pCR
groups exhibited distinct overall survival trends in exploratory analyses. Importantly, the model relied on
explicitly defined radiological and histomorphological attributes, and its predictions were accompanied by case-
specific and population-level explanatory visualizations that clarified the underlying decision logic. A clinician-
oriented graphical interface was also implemented to support real-world application. This study presents a
clinically interpretable radiopathomics-based prediction framework capable of estimating pCR following
neoadjuvant chemoimmunotherapy in ESCC using routinely available imaging data. The proposed approach may
assist clinicians in tailoring post-treatment management, particularly when weighing active surveillance against
immediate surgery.
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Introduction

Esophageal squamous cell carcinoma (ESCC) continues to represent a major global health burden due to its high
incidence and aggressive biological behavior [1]. For patients with locally advanced disease, neoadjuvant
chemoradiotherapy (nCRT) followed by surgical resection remains the established standard of care [2, 3]. In recent
years, however, emerging clinical evidence has positioned neoadjuvant chemoimmunotherapy (nCIT) combined
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with surgery as a compelling alternative. Clinical trials have reported RO resection rates between 80.9% and
98.0%, alongside pathologic complete response (pCR) rates ranging from 16.7% to 50.0% [4, 5]. Moreover, a
prospective comparison suggested that nCIT may confer improved 2-year overall survival (OS) and disease-free
survival (DFS) relative to nCRT, despite comparable pCR rates (22.9% vs 25.9%) [6]. Importantly, attainment of
PCR has been consistently associated with favorable long-term outcomes and may support nonoperative “watch-
and-wait” strategies, thereby preserving organ function and improving patient quality of life [4, 7, 8]. These
considerations underscore the importance of accurately identifying pCR prior to surgery in patients undergoing
nCIT.

Although the clinical value of pCR prediction is well recognized, reliable biomarkers capable of forecasting
response to nCIT remain limited. Commonly investigated tissue-based markers, such as microsatellite instability
[9, 10], programmed cell death ligand-1 (PD-L1) expression [11, 12], and tumor mutational burden (TMB) [13—
15], demonstrate suboptimal predictive performance and are often constrained by high costs, technical demands,
and limited accessibility. As a result, there is a pressing need for practical, reproducible, and economical
approaches to response prediction that can be readily implemented in routine clinical workflows.

Medical imaging constitutes a rich source of both macroscopic and microscopic information and is particularly
amenable to artificial intelligence (Al)-driven analysis. Radiologic modalities such as contrast-enhanced
computed tomography capture tumor-scale characteristics, while histopathological whole-slide images (WSIs)
stained with hematoxylin and eosin provide detailed insights into cellular morphology and tissue architecture.
These complementary data streams offer the potential for enhanced predictive performance through multimodal
integration [16]. Radiomics and pathomics techniques enable the extraction of high-dimensional quantitative
descriptors of tumor phenotype and microenvironment and have demonstrated predictive utility across multiple
cancer types, including ESCC [17-19]. Building on prior evidence supporting radiomics-based prediction of pCR
after nCIT [20], as well as studies highlighting the prognostic relevance of nuclear morphology and textural
patterns [21, 22], the combined use of radiomics and pathomics features represents a logical strategy for improving
preoperative response assessment in ESCC.

However, successful clinical translation of multimodal Al models depends not only on predictive accuracy but
also on transparency and interpretability. In this work, interpretability was explicitly incorporated as a core design
principle, addressed at both the model and feature levels. At the model level, we favored algorithms with traceable
decision-making processes and robust post hoc explanation techniques, such as Shapley-value—based attribution,
to enable visualization of feature contributions at both the individual and population levels while reducing the
opacity associated with deep learning approaches [23]. At the feature level, we prioritized radiomics features with
clear mathematical definitions and pathomics descriptors grounded in interpretable histomorphological
characteristics—such as nuclear size, shape, perimeter, and chromatin texture—to enhance clinical interpretability
and facilitate communication with domain experts.

Accordingly, the present study aimed to construct an interpretable multimodal machine learning framework for
preoperative prediction of pCR to nCIT in ESCC using multicenter data. We systematically evaluated multiple
machine learning algorithms and multimodal fusion strategies to integrate CT-based radiomics with WSI-derived
pathomics features, while formalizing interpretability at both the algorithmic and feature-definition levels. To
support clinical adoption and usability, we further designed case-level and cohort-level explanatory outputs,
including contribution-based visualizations, and developed a user-facing software prototype to demonstrate
potential integration into clinical workflows.

Materials and Methods

Owing to the retrospective nature of the study, the requirement for informed consent was waived. All procedures
were conducted in accordance with the Declaration of Helsinki and complied with established methodological
recommendations for radiomics research [24]. To enhance methodological transparency and rigor, study conduct
was evaluated using a previously proposed 12-item methodological quality checklist [25]. An overview of the
study design and analytical workflow is illustrated in Figure 1.
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Figure 1. Overview of the research workflow.

Pre-treatment contrast-enhanced CT scans and digitized H&E-stained whole-slide images (WSIs) were collected
from 335 patients diagnosed with esophageal squamous cell carcinoma (ESCC) at three different medical centers.
Tumor boundaries were hand-drawn on the CT slices, and the most tumor-dense areas were carefully picked from
each WSI. Quantitative radiomics features were obtained using PyRadiomics, and pathomics features were
calculated with CellProfiler; both feature sets were then filtered for quality and relevance. Four separate prediction
models were constructed: a radiomics-only model, a pathomics-only model, an intermediate multimodal fusion
model (MIFM), and a late multimodal fusion model (MLFM). These were tested on the training group, internal
validation group, and independent external group using receiver operating characteristic (ROC) curves, confusion
matrices, Sankey flow diagrams for reclassification, and survival outcome comparisons. To ensure transparency,
we applied SHAP value analysis, visualized decision pathways for individual patients, and quantified different
cell populations. A simple browser-based interface was built that takes CT images with drawn regions of interest
(ROIs) and CellProfiler results as input and returns the estimated probability of pathologic complete response
(pCR) for each patient. BNB, Bernoulli Naive Bayes; ESCC, esophageal squamous cell carcinoma; GNB,
Gaussian Naive Bayes; KNN, k-nearest neighbors; LASSO, Least Absolute Shrinkage and Selection Operator;
LR, logistic regression; MIFM, multimodal intermediate fusion model; MLFM, multimodal late fusion model;
pCR, pathologic complete response; RF, random forest; ROC, receiver operating characteristic; ROI, region of
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interest; SHAP, SHapley Additive exPlanations; SMOTE, Synthetic Minority Over-sampling Technique; SVM-
RFE, Support Vector Machines-Recursive Feature Elimination; XGBoost, eXtreme Gradient Boosting; WSIs,
whole-slide images.

Patient recruitment

We retrospectively gathered data on all patients with biopsy-confirmed ESCC who completed neoadjuvant
chemoimmunotherapy (nCIT) and then underwent surgery with curative intent at three major academic hospitals:
Zhejiang Cancer Hospital, Renmin Hospital of Wuhan University, and Tianjin Medical University Cancer
Institute and Hospital, spanning July 2019 to July 2023 (total 335 patients). At Zhejiang Cancer Hospital (296
patients), cases were randomly assigned in a 6:4 ratio to either the training dataset or an independent internal test
set (Test-set-1). The external test set (Test-set-2, 39 patients) came from Renmin Hospital of Wuhan University
(July 2020—September 2023, 22 patients) and Tianjin Medical University Cancer Institute and Hospital (June
2020—February 2022, 17 patients). Every patient had a contrast-enhanced chest CT performed no more than 14
days before starting nCIT, and H&E-stained whole-slide images were created from endoscopic biopsy tissue taken
within 7 days of the CT scan. Full eligibility and exclusion rules, along with a detailed patient selection diagram,
appear in Figure 1.

Treatment regimen and pathology assessment

Each patient received a minimum of one cycle combining neoadjuvant immunotherapy with chemotherapy.
Immunotherapy used standard 200 mg doses every 3 weeks of various PD-1 or PD-L1 inhibitors (tislelizumab,
sintilimab, durvalumab, envafolimab, pembrolizumab, camrelizumab, or nivolumab). Chemotherapy followed
platinum-based doublets: TC schedule (repeated every 3 weeks): 14 cycles of nab-paclitaxel 260 mg/m? or
paclitaxel 135-175 mg/m? on day 1, combined with carboplatin AUC 5 mg/mL/min on day 1; TP schedule
(repeated every 3 weeks): 1—4 cycles of nab-paclitaxel 260 mg/m? or paclitaxel 175 mg/m? on day 1, combined
with cisplatin 75 mg/m? on day 1.

Surgery (esophagectomy with curative aim) took place 4—8 weeks after the last nCIT cycle. The choice of open
or minimally invasive technique and the extent of lymph node removal (two-field or three-field) depended on
tumor location and the operating surgeon’s judgment.

Pathologists with extensive experience examined the surgical specimens, with a senior esophageal cancer
specialist providing final confirmation. Tumor regression was graded using the College of American Pathologists
Esophageal Carcinoma Protocol [26]: TRG 0 = no remaining cancer cells (complete response); TRG 1 = only
isolated cells or tiny clusters; TRG 2 = noticeable regression but more than minimal residual cancer; TRG 3 =
abundant residual tumor with little or no regression

Pathologic complete response (pCR) was defined exclusively as TRG 0 in the primary tumor site; all other grades
(TRG 1-3) were grouped as non-pCR. This binary outcome was the main target for building and testing the
prediction models.

Image acquisition and tumor outlining

Two radiologists (HS and XW), each with more than 3 years of experience, manually outlined the primary
esophageal tumors on contrast-enhanced CT images to define regions of interest (ROIs). They were unaware of
pathology results or any model predictions during this step. A senior radiologist (YJ) with over 25 years of
experience reviewed every contour, made adjustments when required, and resolved any differences through
discussion. The final agreed-upon ROIs became the standard for radiomics analysis. All outlining was done in 3D
Slicer software (version 5.1.0) [27].

H&E-stained slides were fixed in formalin, embedded in paraffin, scanned at 20x magnification, and converted
into whole-slide images (WSIs). A thoracic pathologist (BQ) with 3 years of experience, blinded to clinical and
outcome data, identified five representative tumor-rich fields of view on each WSI. These fields were cropped
into 512x512-pixel patches and saved as PNG files. Every patch passed a strict visual quality check to remove
any with staining issues, folds, chatter, sparse tissue, bubbles, ink marks, or other artifacts.

Feature calculation and refinement
Radiomics features (1,094 total) were extracted from the finalized CT ROIs using PyRadiomics [28] (version
3.0.1). These included shape and volume measurements, first-order intensity statistics, multiple texture matrices

e
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(co-occurrence, size zone, run length, dependence, neighboring gray-tone difference), and wavelet-filtered
versions.

Pathomics features (4,892 total) were computed from the H&E WSIs with CellProfiler [29] (version 4.2.8) through
an automated workflow that captured intensity patterns, spatial arrangements, cell and tissue shapes, texture
properties, and fractional area measurements (Figure 2). The five patches per case were averaged to produce one
set of slide-level features per patient.

Feature selection occurred only in the training set and was performed separately for each modality. The steps
were: Address class imbalance using Synthetic Minority Over-sampling Technique (SMOTE); Normalize all
features with Z-score transformation; Apply univariate logistic regression to keep features with p < 0.05
(radiomics) or p < 0.01 (pathomics); Remove redundant pairs by calculating Spearman correlation (discard one
when |p| > 0.85, keeping the feature with stronger outcome association); Run two independent selectors—LASSO
with 10-fold cross-validation and SVM-RFE—and use only the overlapping features for final model training.

Model validation and construction

For single-modality modeling, seven supervised machine learning approaches were systematically assessed for
both the radiomics and pathomics feature spaces, including logistic regression, Gaussian and Bernoulli Naive
Bayes classifiers, support vector machines, random forest ensembles, k-nearest neighbors, and eXtreme Gradient
Boosting (XGBoost). Hyperparameters for each algorithm were optimized via grid search coupled with fivefold
cross-validation. To ensure experimental reproducibility, a fixed random seed was consistently applied during the
tuning process.

Two distinct strategies were explored to integrate radiomics and pathomics information in the multimodal setting.
In the intermediate fusion framework (MIFM), features derived from both modalities were concatenated to form
a unified feature vector, which was then used to train a model using the algorithm that demonstrated the strongest
performance during unimodal evaluation. In contrast, the late fusion framework (MLFM) combined modalities at
the prediction level: the optimal radiomics and pathomics models identified during unimodal screening were first
independently trained, after which their output probabilities were integrated using a logistic regression meta-
classifier. Overall, four categories of predictive models were constructed: radiomics-only, pathomics-only,
multimodal intermediate fusion, and multimodal late fusion.

Model generalizability was assessed using two independent validation cohorts (Test-set-1 and Test-set-2), without
any additional parameter tuning. Validation data underwent identical preprocessing steps as the development data;
however, no resampling strategies (such as SMOTE) or further normalization procedures were applied to the test
cohorts. Model discrimination and classification performance were evaluated using the area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score. Confidence intervals were
estimated using bootstrap resampling with 1,000 iterations for each validation cohort, and 95% confidence
intervals were reported for all metrics. Receiver operating characteristic and precision—recall curves were
generated to facilitate visual comparison among models. For the highest-performing model, decision curve
analysis (DCA) was additionally performed to evaluate potential clinical benefit across a range of threshold
probabilities.

Model interpretation

To clarify how the integrated model arrived at its predictions, we adopted SHapley Additive exPlanations (SHAP)
as a quantitative interpretability strategy. This approach estimates the marginal impact of each radiomics and
pathomics variable on the predicted likelihood of pathological complete response, both for individual patients and
across the study population. The Shapley value is defined as follows:

0;= ) SN} W@(s DEO) o

where: v(S U {j}) —v(S) denotes the incremental contribution of feature ; within coalition S; Y[S € N{j}]
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coefficient assigned to each coalition. At the individual level, SHAP visual outputs illustrate how specific feature

values drive the predicted probability above or below the model’s baseline estimate. At the cohort level,

represents the summation across all possible feature combinations; an corresponds to the weighting
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aggregated SHAP analyses order features by their overall contribution and reveal whether their influence
predominantly favors or opposes pCR.

Beyond global attribution, we reconstructed patient-specific inference trajectories from the trained classifier to
expose the internal decision logic in a sequential manner. For each case, these trajectories enumerate the ordered
decision conditions evaluated by the model, explicitly identifying the contributing feature, its threshold value, and
the magnitude of its incremental effect on the prediction (expressed in log-odds or probability units). The
cumulative effect of these steps yields the final estimated pCR probability. This visualization enables direct
identification of the features and value ranges that most decisively shifted a given prediction toward pCR or non-
pCR, thereby bridging population-level importance with individualized reasoning.

To further investigate histopathological correlates underlying model predictions, we analyzed the tumor
microenvironment (TME) in H&E-stained whole-slide images using Hover-Net [30], an open-source deep
learning framework for nuclear segmentation and coarse cell classification. Within the analyzed image regions,
nuclei were categorized into tumor cells, lymphocytes, connective tissue cells, necrotic cells, and an additional
miscellaneous group. The relative abundance of these cell populations was subsequently compared according to
pathological response (observed pCR versus observed non-pCR) and, independently, according to model-based
stratification (predicted pCR versus predicted non-pCR).

Statistical analysis

Baseline clinical characteristics were analyzed using SPSS software (version 27). Categorical variables were
compared using Pearson’s chi-square test or likelihood-ratio test, as appropriate, while continuous variables were
evaluated using analysis of variance (ANOVA) or the Kruskal-Wallis H test. The predictive relevance of clinical
covariates was assessed through univariable logistic regression analysis. A two-sided p value below 0.05 was
considered statistically significant.

Overall survival comparisons were conducted between patients with observed pCR and non-pCR, as well as
between groups stratified by model-predicted response status. Survival curves were generated using the Kaplan—
Meier method, with group differences evaluated using the log-rank test based on a prespecified probability
threshold. Hazard ratios (HRs) and corresponding 95% confidence intervals were estimated using Cox
proportional hazards regression models.

Survival analyses were performed in R software (version 4.4.2) using the “survival” package (version 3.8.3), with
visualization facilitated by the “survminer” package (version 0.5.0). Machine learning analyses were implemented
in Python (version 3.13.1) using the “scikit-learn” library (version 1.6.1) and the “xgboost” package (version
3.0.0).

Results and Discussion

Patient characteristics

Baseline demographic and clinicopathological characteristics stratified by pathological response are summarized
in Table 1. Among the 335 included patients, 77 (22.99%) achieved pathological complete response, whereas 258
(77.01%) were classified as non-pCR. Comparisons between groups revealed no significant differences across
most clinical variables, with the exception of smoking history, number of nCIT cycles administered, and the
number of suspicious lymph nodes (s-LNs), which differed significantly between response groups (p < 0.05).

Table 1. Clinical and demographic profile of patients included across all cohorts

Characteristic P value Overall Test set-2 Test set-1 Training set
(N=335) (n=39) (n=115) (n=181)
Sex 0.189
Male 312 (93.13%) 34 (87.18%) (951;2%) 168 (92.82%)
Female 23 (6.87%) 5 (12.82%) 5(4.35%) 13 (7.18%)
Age (median [range]) 0.825 64 [44-82] 62 [48-76] 65 [46-77] 64 [44-82]
Drinking status 0.047*
Current or former 239 (71.34%)  22(56.41%) 80 (69.57%) 137 (75.69%)
Never 96 (28.66%) 17 (43.59%)  35(30.43%) 44 (24.31%)
Smoking status 0.286
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Current or former 220 (65.67%) 27 (69.23%) 69 (60.00%) 124 (68.51%)
Never 115 (34.33%) 12 (30.77%) 46 (40.00%) 57 (31.49%)
Tumor location 0.251
Lower 120 (35.82%) 17 (43.59%) 47 (40.87%) 56 (30.94%)
Middle 169 (50.45%) 19 (48.72%) 51 (44.35%) 99 (54.70%)
Upper 46 (13.73%) 3 (7.69%) 17 (14.78%) 26 (14.36%)
ECOG performance status 0.269
0 146 (43.58%) 21 (53.85%) 44 (38.26%) 81 (44.75%)
1 184 (54.93%) 18 (46.15%) 70 (60.87%) 96 (53.04%)
2 5 (1.49%) 0 (0%) 1 (0.87%) 4 (2.21%)
Clinical T stage (cT) 0.127
1 3 (0.90%) 0 (0%) 1 (0.87%) 2 (1.10%)
2 50 (14.92%) 2 (5.13%) 19 (16.52%) 29 (16.02%)
3 267 (79.70%) 32 (82.05%) 90 (78.26%) 145 (80.11%)
4a 15 (4.48%) 5(12.82%) 5(4.35%) 5(2.77%)
Clinical TNM.sfage (AJCC 8th 0.475
edition)
| 3 (0.90%) 0 (0%) 1 (0.87%) 2 (1.10%)
II 74 (22.09%) 8 (20.52%) 26 (22.61%) 40 (22.10%)
I 228 (68.06%) 23 (58.97%) 78 (67.82%) 127 (70.16%)
IVA 30 (8.95%) 8(20.51%) 10 (8.70%) 12 (6.64%)
Clinical N stage (cN) 0.707
0 47 (14.03%) 7 (17.95%) 16 (13.92%) 24 (13.26%)
1 170 (50.75%) 15 (38.46%) 60 (52.17%) 95 (52.49%)
2 105 (31.34%) 14 (35.90%) 35 (30.43%) 56 (30.94%)
3 13 (3.88%) 3 (7.69%) 4 (3.48%) 6 (3.31%)
Neoadjuvant immunotherapy <0.001*
cycles
<2 271 (80.90%) 22 (56.41%) 96 (83.48%) 153 (84.53%)
>2 64 (19.10%) 17 (43.59%) 19 (16.52%) 28 (15.47%)
Immunotherapy regimen 0.199
PD-L1 inhibitor 37 (11.04%) 1 (2.56%) 14 (12.17%) 22 (12.15%)
PD-1 inhibitor 298 (88.96%) 38 (97.44%) (87]2;%) 159 (87.85%)
RO resection 0.556
Yes 314 (93.73%)  38(97.44%) (93].(9)21;%) 168 (92.82%)
No 21 (6.27%) 1 (2.56%) 7 (6.09%) 13 (7.18%)
Lymphadenectomy extent 0.243
Two-field 36 (10.75%) 7 (17.95%) 13 (11.30%) 16 (8.84%)
Three-field 299 (89.25%) 32 (82.05%) (881.;)(2)%) 165 (91.16%)
Surgical approach 0.103
Minimally invasive 310 (92.54%) 33 (84.62%) (921'(1)3% ) 171 (94.48%)
Open 25 (7.46%) 6 (15.38%) 9 (7.83%) 10 (5.52%)
Pathological complete response 0.144
(tumor pCR)
Yes 77 (22.99%) 13(33.33%) 21 (18.26%) 43 (23.76%)
No 258 (77.01%) 26 (66.67%) 94 (81.74%) 138 (76.24%)
Pathological N stage (ypN) 0.465
0 189 (56.42%) 18 (46.15%) 67 (58.26%) 104 (57.46%)
1 91 (27.16%) 15 (38.46%) 32 (27.83%) 44 (24.31%)
2 41 (12.24%) 5(12.83%) 10 (8.70%) 26 (14.36%)
3 14 (4.18%) 1 (2.56%) 6 (5.21%) 7 (3.87%)
Pathological T stage (ypT) 0.052
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0 77 (22.99%) 13(33.33%) 21 (18.26%) 43 (23.76%)
1 70 (20.90%) 13 (33.33%) 24 (20.87%) 33 (18.23%)
2 62 (18.51%) 7 (17.96%) 23 (20.00%) 32 (17.68%)
3 126 (37.60%) 6 (15.38%) 47 (40.87%) 73 (40.33%)
Pathological TNM stage (ypTNM, 0.550
AJCC 8th edition)
1 151 (45.07%) 16 (41.03%) 51 (44.35%) 83 (45.86%)
1 50 (14.93%) 3 (7.69%) 20 (17.39%) 27 (14.92%)
11 134 (40.00%)  20(51.28%) 44 (38.26%) 71 (39.22%)
Survival time, days (median 381 [136— 716 [96—
[range]) 0.137 692 [96-1772] 1240] 1172] 727 [100-1661]
Number of dissected lymph nodes 0.042% 23 [5-78] 23 [8-61] 22 [5-78] 24[6-63]

(median [range])

. Values are presented as counts with corresponding percentages unless indicated otherwise.

. P values were derived from comparisons among the training cohort, Test-set-1, and Test-set-2.

. The s-LN count refers to the total number of lymph nodes excised during surgical resection.

. A two-sided P value <0.05 was used to denote statistical significance.

) AJCC: American Joint Committee on Cancer cN: node stage, clinical cT: tumor stage, clinical cTNM: Tumor-Node-Metastasis, clinical
ECOG: Eastern Cooperative Oncology Group NCIT: chemoimmunotherapy, neoadjuvant pCR: complete response, pathologic PD-1:
protein 1, programmed cell death PD-L1: ligand 1, programmed cell death s-LN number: lymph nodes dissected surgically, number of
ypN: node stage, pathologic after neoadjuvant therapy ypT: tumor stage, pathologic after neoadjuvant therapy ypTNM: Tumor-Node-
Metastasis, pathologic after neoadjuvant therapy

Performance of single-modality models

Following the feature reduction process, the unimodal signatures consisted of 14 radiomics features and 11
pathomics features. Performance comparisons across the seven candidate machine learning -classifiers
demonstrated that the XGBoost algorithm achieved the most stable and robust predictive performance across the
training cohort as well as both validation cohorts (Figures 2a and 2b). Consequently, XGBoost was chosen to
construct the final radiomics-only and pathomics-only models using their respective optimized feature subsets.
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Figure 2. Overall predictive performance of the proposed models for pathological complete response (pCR).
Panels a and b display radar plots summarizing the AUCs of seven machine learning classifiers trained using
pathomics features alone and radiomics features alone, respectively, in the training cohort. Panel C presents a
Sankey diagram illustrating how predictions from the unimodal models are redistributed after integration into
the multimodal intermediate fusion model (MIFM), with reference to the true pCR status. Discriminative
ability of the unimodal and multimodal approaches is illustrated using ROC curves for the training cohort (d),
test cohort 1 (e), and test cohort 2 (f). Corresponding precision—recall curves are shown in panels g—i. Panels
j—1 report confusion matrices for the MIFM across the training and two independent test cohorts. Panels m
and n depict flow charts comparing MIFM-assigned classes with observed outcomes in test cohorts 1 and 2,
highlighting the distribution of correctly and incorrectly classified cases. AUC, area under the curve;
AUPRC, area under the precision—recall curve; BNB, naive Bayes, Bernoulli; GNB, naive Bayes, Gaussian;
KNN, neighbors, k-nearest; LR, regression, logistic; MIFM, model, multimodal intermediate fusion; MLFM,
model, multimodal late fusion; pCR, complete response, pathological; PR, precision—recall; RF, forest,
random; ROC, receiver operating characteristic; SVM, machine, support vector; XGB, Boosting, eXtreme
Gradient.

Across cohorts, the pathomics-based model demonstrated an AUC of 0.88 (95% CI, 0.82—0.94) in the training
cohort, which declined to 0.68 (95% CI, 0.55-0.81) and 0.67 (95% CI, 0.48—0.86) in test cohorts 1 and 2,
respectively. The radiomics-based model showed slightly stronger discrimination, achieving AUCs of 0.90 (95%
CI, 0.84-0.95) in training, 0.74 (95% CI, 0.62—0.85) in test cohort 1, and 0.68 (95% CI, 0.51-0.85) in test cohort
2 (Figures 2d-2f). In the training cohort, radiomics also outperformed pathomics in terms of classification
sensitivity, accuracy, and specificity (0.84, 0.77, and 0.86 vs. 0.81, 0.72, and 0.83), with detailed metrics
summarized in Table 2.

Table 2. Quantitative evaluation of model performance for predicting pathological complete response.

Area Under the Overall Sensitivit Specificit F1 Score
Dataset Model Curve (95% Accuracy (95% Cli, (55 % CI)y 95% CI)
Confidence Interval) (95% CI) ’ ? ¢
Training Unimodal 0.81 (0.75— 0.72 (0.58— 0.83 (0.77-  0.64 (0.52—
. 0.88 (0.82-0.94
Set Pathomics Model ( ) 0.86) 0.85) 0.89) 0.74)
Unimodal 0.84 (0.79— 0.77 (0.64— 0.86 (0.80—  0.69 (0.58-
. 0.90 (0.84-0.95
Radiomics Model ( ) 0.90) 0.89) 0.92) 0.80)
Multi-Input
. 0.93 (0.90— 0.84 (0.71- 0.96 (0.93—  0.86 (0.77—
Fusion Model 0.97 (0.94-0.99)
(MIFM) 0.97) 0.95) 0.99) 0.93)
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Multi-Level

Fusion Model 0.93 (0.88-0.97) 0'8(9) (9(;')85 B 0'7(9) (9(1')67_ 0'9(2) g(;.)zn— 0'73 é%f 8-
(MLFM) ' ' ' '
Test Set Unimodal 0.68 (0.59- 0.52 (0.32— 0.71 (0.61-  0.37 (0.21—
1 Pathomics Model 0.68 (0.55-0.81) 0.77) 0.75) 0.80) 0.52)
Unimodal 0.69 (0.61— 0.62 (0.39- 0.70 (0.61-  0.42 (0.26—
Radiomics Model 0.74(0.62-0.85) 0.77) 0.83) 0.80) 0.57)
Multi-Input
. 0.87 (0.81- 0.62 (0.41- 0.93 (0.87- 0.63 (0.44—
Fusion Model 0.78 (0.64-0.90)
(MIFM) 0.92) 0.83) 0.98) 0.79)
Multi-Level
Fusion Model 0.77 (0.66-0.86) 0'78 (7(;’)6 = 05 (7) (7(;)3 > 0'73 g)l')é3_ 0'4(1) 2_06')24_
(MLFM) ' ' ' :
Test Set Unimodal 0.69 (0.56— 0.54 (0.27- 0.77 (0.60—  0.54 (0.27—
2 Pathomics Model 0.67/(0.48-0.86) 0.82) 0.82) 0.92) 0.74)
Unimodal 0.59 (0.44— 0.54 (0.29— 0.62 (0.42— 0.47 (0.22—
Radiomics Model 0.68 (0.51-0.85) 0.74) 0.80) 0.31) 0.67)
Multi-Input
. .64— .54 (0.27— . 14— .61 (0.33—
Fniodd  orc(0ssosy 0708 0021 0RO 06033
(MIFM) ' ' ’ ’
Multi-Level
.64 (0.49— .54 (0.25— . 50— . 24—
Fsonodel 0 @ss0sy OO 054025 008 0500
(MLFM) ’ ’ ’ ’

MLFM, multimodal late fusion model; MIFM, multimodal intermediate fusion model; AUC, area under curve.
Because of the imbalance between response classes, precision—recall analysis was performed as a complementary
evaluation. The pathomics-based classifier achieved AUPRC values of 0.73 in the training cohort, decreasing to
0.37 in test cohort 1 and 0.50 in test cohort 2. The radiomics-based classifier consistently showed higher PR
performance, with AUPRCs of 0.81, 0.45, and 0.55 in the corresponding cohorts (Figures 2g—2i).

Multimodal model performance

Using the fusion strategies defined a priori, we constructed both intermediate- and late-fusion multimodal
frameworks. In all datasets, these multimodal approaches surpassed the unimodal radiomics and pathomics
models across all assessed metrics (Table 2 and Figures 2d—2i). Direct comparison between the two fusion
strategies revealed superior overall classification performance for the multimodal intermediate fusion model
(MIFM), which achieved higher sensitivity, specificity, accuracy, and F1 score than the multimodal late fusion
model (MLFM) (Table 2). Evaluation of the MIFM confusion matrices (Figures 2j—2n) demonstrated a strong
ability to correctly identify non-pCR cases, with 87 true negatives in test cohort 1 and 23 in test cohort 2, resulting
in the highest specificity among all evaluated models (Table 2). The Sankey visualization illustrated how
integrating modalities corrected a substantial proportion of unimodal misclassifications, with a clear net shift
toward concordance with true labels (Figure 2c¢).

Exploratory survival stratification based on observed and predicted pCR

We further explored whether overall survival (OS) differed according to either pathological pCR status or pCR
predicted by the MIFM using a predefined decision threshold. In the training cohort, patients who achieved a
pathological pCR exhibited prolonged OS, as reflected by a clear separation of Kaplan—Meier curves (Figure 3a).
However, this distinction was not statistically significant in either external test cohort (Figures 3¢ and 3d). When
patients were stratified according to the model-predicted pCR status, a comparable trend was observed, although
no cohort demonstrated statistically significant survival separation (Figures 3b, 3d and 3f). Consistent with these
findings, univariate Cox proportional hazards analysis showed that both observed pCR and MIFM-predicted pCR
were significantly associated with OS (p < 0.005).
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Figure 3. Evaluation of prognostic stratification capability. Kaplan—Meier survival curves for overall survival
are shown according to pathological response status (pCR vs. non-pCR) in the training cohort (a), test cohort
1 (c), and test cohort 2 (e). Corresponding survival analyses based on pCR status predicted by the multimodal
intermediate fusion model (MIFM) are presented for the training cohort (b), test cohort 1 (d), and test cohort

2 ().

Abbreviations: KM, Kaplan—Meier; MIFM, multimodal intermediate fusion model; OS, overall survival; pCR,

pathological complete response.

Model interpretability and clinical software implementation

Feature attribution analysis using SHAP demonstrated how individual radiomics and pathomics variables
influenced MIFM output probabilities (Figure 4a). Examination of inter-feature relationships revealed weak to
moderate correlations between radiomics and pathomics inputs (ranging from —0.57 to 0.69) (Figure 4b),
indicating that each modality contributes largely nonredundant information. This pattern supports the premise that
integrating imaging- and tissue-derived features enables a more comprehensive representation of tumor
characteristics and therapeutic response.
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Figure 4. Model interpretability and explanatory analyses. (a) SHAP-based interpretation of the multimodal
intermediate fusion model (MIFM), with a beeswarm visualization depicting feature-specific influences on
individual predictions (right) and a ranked bar plot summarizing overall feature importance using mean
absolute SHAP values (left); the inset illustrates relative modality contributions. (b) A Spearman correlation
network illustrating relationships between retained radiomics and pathomics features, where edge thickness
represents correlation strength. (c) Distribution of whole-slide image—derived cellular composition, including
tumor, lymphocyte, stromal, necrotic, and other components, shown as boxplots and stratified by pathological
response (left) and by MIFM-predicted response (right). (d) Representative case examples highlighting both
conflicting and concordant unimodal predictions: Patient A (true pCR) demonstrates how MIFM integrates
discordant radiomics and pathomics evidence, while Patient B (true non-pCR) illustrates agreement across
modalities. For each case, spatial feature visualizations, rankings of the top 20 contributing variables, and
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decision-path diagrams depict how modality-specific information is progressively integrated into the final
output. MIFM, multimodal intermediate fusion model; pCR, pathological complete response; SHAP,
SHapley Additive exPlanations; WSI, whole-slide image.

Comparative analysis of cellular composition revealed consistent trends when stratifying by either observed
pathological response or model-derived predictions (Figure 4c¢). In both comparisons, pCR groups—whether
defined by histopathology or by MIFM output—were characterized by relatively increased tumor and lymphocyte
proportions and reduced necrotic content compared with their respective non-pCR counterparts.

Figure 4d illustrates the interpretability workflow using two illustrative cases to clarify how predictions are
generated. In the first example, disagreement between unimodal radiomics and pathomics classifiers was resolved
through weighted integration within the multimodal framework. In the second example, both unimodal models
reached the same conclusion. For each case, heatmaps highlight spatial patterns of influential imaging and tissue
features, feature-attribution plots quantify how individual variables shifted the prediction toward or away from
pCR, and decision-path visualizations outline the sequential aggregation of evidence that produced the final
probability estimate. Collectively, these elements connect low-level feature signals with transparent, case-specific
model reasoning.

To facilitate practical use, we developed a web-based graphical interface that operates without programming
expertise. Users provide a pretreatment CT scan, the corresponding tumor region-of-interest mask, and a
CellProfiler-generated CSV file, after which the system outputs an individualized pCR probability together with
basic data validation results. The software prototype is intended for research purposes only.

Accurate preoperative identification of pathological complete response (pCR) after neoadjuvant
chemoimmunotherapy (nCIT) remains an unmet clinical challenge in esophageal squamous cell carcinoma
(ESCCQ). In this multicenter retrospective study spanning three academic institutions, we addressed this gap by
developing and externally validating an interpretable multimodal machine learning approach that jointly leverages
contrast-enhanced CT-derived radiomics and H&E-stained whole-slide image (WSI)-based pathomics. By
integrating routinely acquired imaging and biopsy data, the proposed framework enables noninvasive estimation
of pCR likelihood prior to surgery. Compared with single-modality models, the intermediate fusion strategy
demonstrated more consistent and generalizable performance across the development cohort and two independent
validation cohorts, supporting the premise that radiologic and histopathologic information provide complementary
signals relevant to treatment response.

A defining feature of the present work is its emphasis on clinical feasibility and transparency. All input data are
part of standard diagnostic workflows, eliminating the need for additional assays, specialized imaging, or
increased cost. Moreover, model interpretability was embedded as a design constraint rather than a post hoc
consideration. Both radiomics and pathomics features were explicitly defined using mathematical and
morphologic descriptors, and model outputs were accompanied by explanations at multiple levels, including
global feature importance, spatial feature localization, and case-specific decision pathways. To facilitate
exploratory clinical use, we further implemented a browser-based graphical interface that requires no
programming expertise and returns individualized pCR probabilities. Together, these elements provide a
pragmatic and interpretable foundation for future clinical decision support in nCIT-treated ESCC.

The clinical motivation for this work arises from the evolving neoadjuvant treatment landscape in esophageal
cancer. The CROSS trial firmly established neoadjuvant chemoradiotherapy (nCRT) as superior to surgery alone
in locally advanced ESCC [31]. However, despite improved local control, distant metastasis remains the
predominant mode of failure after nCRT, occurring far more frequently than local recurrence (22.0% vs 5.9%).
This observation has prompted ongoing efforts to intensify systemic therapy. Subsequent studies demonstrated
that more intensive chemotherapy regimens can further improve overall survival (OS) and local disease control
compared with nCRT [32, 33], raising interest in treatment de-escalation strategies such as omission of
esophagectomy in patients achieving pCR [34]. Unfortunately, reliable noninvasive tools to identify pCR are
lacking.

Concurrently, immunotherapy has reshaped systemic treatment paradigms for esophageal cancer. Several studies
have reported encouraging outcomes with combined chemotherapy and immunotherapy in the first-line treatment
of advanced disease [35, 36], suggesting potential applicability in the neoadjuvant setting. Direct comparisons
between nCIT and nCRT for locally advanced ESCC are ongoing. In a prospective multicenter study across eight
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high-volume centers, Guo et al reported superior 2-year OS and disease-free survival with nCIT compared with
nCRT, while pCR rates were similar and major pathological response favored nCRT [6]. Although the optimal
neoadjuvant regimen remains unsettled, these findings collectively point to a growing role for
chemoimmunotherapy and reinforce the need for predictive tools tailored to this treatment context.

From a clinical management perspective, the inability to determine pCR status before surgery limits individualized
treatment strategies. Patients who ultimately achieve pCR may be candidates for nonoperative management,
potentially avoiding the morbidity of esophagectomy and preserving quality of life [37-39]. In contrast, patients
unlikely to achieve pCR benefit from timely surgical resection to eradicate residual disease. Accurate preoperative
stratification is therefore essential for balancing the risks of overtreatment and undertreatment. Our multimodal
framework directly addresses this clinical need by providing a noninvasive estimate of pCR probability, thereby
informing decisions between surveillance and prompt surgery.

Multimodal data integration has shown promise for response prediction in multiple oncologic settings. Mao et a/
combined MRI, WSIs, and clinical variables to predict pCR after neoadjuvant chemotherapy in breast cancer [40],
though their reliance on deep learning—derived features limited semantic interpretability. In ESCC, Qi et al
demonstrated the feasibility of combining CT imaging with WSIs to predict pCR after nCIT [41], but their study
involved a relatively small paired dataset and pathomics features extracted via deep learning. In contrast, the
present study represents one of the largest multimodal investigations of pCR prediction after nCIT in ESCC to
date, incorporating paired pretreatment CT scans and biopsy WSIs from three centers with external validation. By
relying on handcrafted, explicitly defined radiomics and pathomics features, our approach enhances
interpretability while maintaining competitive predictive performance.

Notably, the multimodal intermediate fusion model (MIFM) consistently achieved higher specificity than
unimodal models across all cohorts (Table 2). This operating characteristic is clinically meaningful, as it reduces
the likelihood of falsely classifying non-pCR patients as pCR, thereby minimizing inappropriate adoption of
watch-and-wait strategies. Patients predicted as pCR could instead be considered for cautious surveillance
protocols with confirmatory assessments, while those predicted as non-pCR could proceed directly to surgery.
Determining safe operating thresholds and workflows for such strategies will require prospective evaluation.

To address the challenges posed by high-dimensional feature spaces and limited cohort sizes [42, 43], we
implemented a stringent feature selection pipeline confined to the training cohort. From an initial pool of 1,094
radiomics and 4,892 pathomics features, two complementary selection methods—LASSO regression and SVM
recursive feature elimination—were applied, and only overlapping features were retained. Multimodal integration
was performed using both intermediate and late fusion approaches, combining 14 radiomics and 11 pathomics
features. Although late fusion has been reported to offer robustness in some contexts [44], our findings indicate
that intermediate fusion—by explicitly modeling interactions between modalities—can yield superior specificity
in this setting (Table 2 and Figures 2d-2i). Preserving modality-specific information while exploiting cross-
modality complementarity may therefore enhance both discrimination and robustness.

Interpretability analyses further linked model behavior to biologically plausible imaging and histologic
characteristics. SHAP analysis highlighted radiomics features capturing textural heterogeneity and intensity
distribution, such as wavelet-based size zone nonuniformity and high-percentile intensity metrics, which may
reflect tumor heterogeneity, vascularity, or necrosis. Pathomics features describing nuclear texture and
morphology, including measures of hematoxylin staining uniformity and nuclear asymmetry, were also
influential. These features align with known associations between nuclear irregularity, proliferative activity, and
malignant potential [45], providing a conceptual bridge between quantitative image features and tumor biology.
Case-level explanations illustrated how multimodal integration resolves conflicting evidence. In a representative
PCR case, discordant predictions from unimodal radiomics and pathomics models were reconciled by the MIFM
through weighted integration of modality-specific features, resulting in a correct final classification. In contrast,
anon-pCR case with concordant unimodal predictions demonstrated balanced contributions from both modalities.
Decision-path visualizations explicitly traced how feature thresholds accumulated to cross—or remain below—
the decision boundary, offering transparency into the model’s reasoning process. These examples underscore the
synergistic relationship between macroscopic radiologic patterns and microscopic tissue characteristics.

We also explored associations between tumor microenvironment (TME) composition and response status. The
TME, comprising malignant cells, stromal components, vasculature, and immune infiltrates, plays a central role
in tumor progression and response to immunotherapy [46—48]. Using H&E-stained WSIs, we quantified cell-type
fractions and compared distributions according to observed and model-predicted pCR status. In both analyses,
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PCR groups tended to show higher tumor and lymphocyte fractions and lower necrotic content, consistent with
prior reports linking lymphocytic infiltration and preserved tumor architecture to treatment sensitivity [49, 50].
Although these trends did not reach statistical significance—Ilikely due to limited sample size, biopsy
heterogeneity, and segmentation variability—they are biologically plausible and warrant further investigation in
larger prospective cohorts.

Several limitations should be acknowledged. The retrospective design and modest size of the external validation
cohorts introduce potential bias and limit generalizability. Established immunotherapy biomarkers such as tumor
mutational burden and PD-L1 expression were not incorporated because they were not uniformly available and
would increase cost; future integration of such markers may improve performance. Manual segmentation and
quality control of CT images and WSIs, despite standardized protocols, introduce subjectivity, highlighting the
need for automated pipelines. Additionally, stain normalization and color augmentation were not applied and
should be explored in future studies. Survival analyses were exploratory, as statistically significant Kaplan—-Meier
separation was observed only for observed pCR in the training cohort, likely reflecting limited event numbers and
the multifactorial determinants of long-term outcomes. Finally, while this study emphasizes interpretability using
handcrafted features, future work may benefit from interpretable deep learning approaches and validation of
generated biological hypotheses using genomic data.

Conclusion

In summary, we present an interpretable multimodal machine learning framework that integrates contrast-
enhanced CT radiomics with H&E-stained WSI pathomics to predict pCR before surgery in ESCC patients
undergoing nCIT. By combining clinical practicality, external validation, and transparent model reasoning, this
approach demonstrates potential to support individualized treatment decisions between surveillance and timely
surgery. Prospective, large-scale studies will be essential to confirm clinical utility and enable translation into
routine practice.
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