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ABSTRACT

Efficiently directing patient movement within hospitals is essential for delivering effective secondary care. By
treating a hospital as a set of linked compartments through which patients transition, we formulate equations that
describe these flows as a network of interdependent dynamic processes. Many influences shape these
interactions—some identifiable, many interacting in complex ways. Unlike discrete-event or agent-based
methods, this approach does not require detailed knowledge of every underlying factor; instead, it focuses on the
overall transfers between units, consistent with a system-dynamics framework. Using this perspective, we identify
two equilibrium conditions: a trivial state in which no patients are present, and a non-trivial state representing
ongoing activity. We intend to analyse bed-occupancy data from a UK hospital to test the validity of this approach
and evaluate how widely it can be applied.
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Introduction

The National Health Service (NHS) in the United Kingdom is under significant strain, particularly regarding the
availability of hospital beds. A key contributor to challenges in secondary (hospital) care is that the UK maintains
one of the lowest counts of hospital beds per capita among OECD nations [1]. Consequently, managing the
progression of patients through hospitals has become increasingly difficult. The combined effect of limited
capacity and growing demand led to bed-occupancy figures rising from 87.7% in quarter 3 of 2010/11 to 92% in
Q3 of 2019/20—just before the pandemic [2].

As secondary care grows more complicated, bed numbers often emerge as the main constraint on service delivery.
Improving the effectiveness of bed utilization (and reducing associated opportunity costs) is therefore crucial for
decision-makers. Although numerous attempts have been made to model bed use within specific departments
(micro-level) or across broader healthcare systems (macro-level), only a small number of models provide a
dependable, whole-hospital representation that follows patients from admission through discharge or death while
accounting for interactions among clinical areas. Individuals with serious conditions (such as COVID-19,
hereafter Covid) enter, move through, and exit hospitals. By regarding the hospital as a system composed of
several compartments, our aim is to derive equations describing how these areas interact dynamically. These
interconnections depend on many variables—some measurable, others mutually dependent. The central research
question here is: How can a dynamical-systems framework be used to represent patient transitions across hospital
departments so as to enhance bed utilization and inform resource planning? The motivation for this work stems
from the fact that existing frameworks frequently concentrate on particular units or narrow situations (for instance,
emergency departments or Covid-related flows) and thus fail to portray the hospital-wide dynamics that shape
overall capacity.
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We cannot, and need not, identify every driver influencing these flows—as required in discrete-event or agent-
based approaches—and instead attend to the aggregate movements between compartments, consistent with a
system-dynamics methodology.

Background

Given sustained pressure on bed availability, hospital administrators continually look for strategies that improve
their use. Doing so requires understanding the principal patient groups and the way they progress through the
system. More than fifty years ago, mathematical modelling was proposed as a means of supporting improved bed
management [3]. A variety of deterministic, stochastic, multistage, and algorithmic techniques have since been
applied, each with limitations. Examples include: concentrating on elective admissions [4, 5]; restricting analysis
to a single, often highly specialized, ward [6—10]; addressing only part of the clinical workload without defining
patient categories [11]; or focusing on medium-term capacity planning for an entire hospital [12] or an urban
health network [13, 14]. Among the more comprehensive attempts was StratBAM [15], developed for a U.S.
hospital equipped with complete electronic records—conditions that differ markedly from NHS settings. The lone
systematic review of simulation models in this domain examined patient flow specifically within UK emergency
departments [8], and even within that narrow focus, the evidence base was described as “small and poorly
developed.”

The Covid pandemic magnified these pressures worldwide, inspiring numerous investigations aimed at predicting
bed requirements. Although these studies varied in scope, most did not address all general medical admissions
(Covid and non-Covid) within a single hospital. A systematic review on surge-capacity planning identified 690
publications, but only six models capable of projecting both case volumes and capacity needs over time [16].
None investigated patient-movement patterns inside hospitals. Other research concentrated solely on Covid-
related resource requirements (primarily to guide the use of limited intensive-care capacity) [17], or explored
hospital-bed efficiency at a national scale [18], or examined planning for new-bed construction [19].

General model and description
To explore how delays in admission queues might influence mortality, we outline the connections among the
compartments shown in Figure 1 as follows:

Direct effects

There is strong observational support for the relevance of:

* The volume of beds allocated to and occupied by medical patients, as opposed to those used by other
specialties—such as surgery, orthopaedics, gynaecology, and so on (as previously noted), and
* The daily total of patients taken on by the medical on-call team within a 24-hour window. Individuals admitted
under the medical service typically represent a reasonably consistent mixture of conditions (e.g., myocardial
infarction, stroke, diabetic complications, infections). Although this distribution shifts across days and seasons, it
tends to remain quite steady across longer timescales (year-to-year). It is also well documented that emergency-
admission numbers vary with the day of the week, with weekdays showing more than double the volume of
weekend admissions.

Indirect effects

Reduced throughput in the ED may reflect wider cultural or resource-related issues. For instance, weaknesses in
local organisational leadership might impede performance across multiple departments. Likewise, difficulties
within regional social-care services may delay transfers of patients who are medically fit for discharge, affecting
all wards—including the ED (i.e., vectors 1-4 in (Figure 1))—a pattern currently common across many NHS
hospitals.
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Figure 1. This schematic illustrates the dynamic balance among hospital units, beginning with entry through
the emergency department (E), progressing through the wards (G, C, I), and ending in discharge (H) or death

(M).

During the pandemic period (up to March 2024), the weekly number of hospitalised Covid patients in England
ranged from 45 to 3800. Across 2020-2021, emergency medical admissions averaged roughly 7,300, and during
the largest wave of Covid infections, the doubling time for admissions in early March was 26 days, while the
halving time in April was 20 days. Admission numbers are highly dependent on the quantity of unoccupied beds
on a given day (as admitting thresholds are adjusted accordingly). The proportion of Covid admissions naturally
tracks the prevailing level of community transmission. We assume that knowing the current hospital census and
available capacity enables estimation of the number of patients who will require critical-care support (i.e., ICU
beds) over the next 24 hours. Since shifts in non-epidemic case mix occur over months to years, whereas epidemic
dynamics evolve within days—and because our focus is a 24-hour timescale—we treat non-epidemic case mix as
effectively constant. The components of the model are summarised in Figure 1, and can be expressed in Eq. (1)

as follows:
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Here Fi, i=1,2,3,4 denotes the interaction terms that shape the behaviour of the model. The endogenous

(dependent) variables are defined as follows:

* E — population in the emergency department

* C — occupancy of the specialist ward(s) (in this context, the Covid ward)

* G — number of patients in the general medical ward

* I - ICU population

* H — individuals at home (represented implicitly through the wE component)
* m — mortality

The initial conditions for the system in Eq. (1) are set so that (0)>0, C(0)=0, G(0)>0, and (0)>0. The model
outlines how patients enter the ED, a process driven both by infection prevalence and by hospital outflow
(discharges plus deaths) once Covid pressure subsides. The parameter » captures admission volume, a represents

e
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the rate at which patients are processed from the ED to the Covid ward (C), and when infection levels are low, a
functions as a half-saturation constant. The quantity § specifies the linear flow into the ICU (I). The parameters
I'i i=1,2, describe transitions between E and the other departments. The symbol { reflects day-to-day variation in
virus transmission within the ED population. The parameter € is central to simplifying the full four-compartment
framework into a reduced special-case model. Mortality parameters Mi,=1,2,3 give the death rates, while w In Eq.
(1), the first component uses a logistic structure to describe daily hospital activity. Here, K represents total hospital
capacity, and rE includes all medical admissions—heart attacks, strokes, sepsis, seizures, diabetic complications,
etc.—whose long-term proportions remain comparatively stable. The combined recruitment rate of susceptible
patients and natural mortality is expressed as a=r—d. The total in-hospital population is summarised as E=C+G+I,
where C corresponds to the Covid ward, G to the general medical ward, and I to the ICU. Although the hospital
could be expressed with seven separate compartmental equations, the framework here is condensed into four. The
second component of the first equation applies a Holling type II response to describe transfers from admission (E)
to the Covid department (C).
The confirmed infected population in I (the ICU) can also be represented using a Holling type II response. Here,
I'1 acts as the transition parameter governing movement from C to I. Mortality M appears in the second, third,
and fourth equations of Eq. (1), reflecting deaths in multiple departments. In reality, these rates depend on factors
such as recovery times, the number of infectious patients requiring care, and bed occupancy during peak demand.
The third term introduces additional mortality, with fC quantifying Covid-related effects on ICU patients; the
infected population in ICU can reach a saturation level adjusted by the factor (1+eC). The second and third
equations in the system describe patient movement from C to G using a Holling type II term with parameter a
which reflects transfer time between departments.
The final equation represents the main hospital pathway during Covid conditions. The first term captures patient
movement between the ICU and rehabilitation units, with E denoting ED inflow, w representing the recovery or
discharge rate, and M denoting daily mortality. Any hospital contains at least seven functional compartments, and
movement across them is influenced by several factors, including:
* Administrative workflow and service quality, represented through the logistic component in Eq. (1).
» Workforce capacity—aftected by issues such as staff illness—embedded in the resource parameter K.
* Severity of illness or infection in Covid cases, modelled in the second equation of Eq. (1).
» Ward-specific capacity (beds and space), reflected in the third and final equation of Eq. (1).

Analysis of the model equilibrium

This section gives a detailed examination of the system’s behaviour and the equilibrium structure derived from
Eq. (1). We produce explicit analytical forms for locating equilibria and for determining their stability under
general parameter choices, and then evaluate outcomes for the specific cases K=500 and K=100. The following
section broadens this to the entire interval 0<K<1000.

Location of equilibria

The equilibrium configurations E(t)=Ee, C(t)=Ce, G(t)=Ge and I(t)=lef Eq. (1) arise when
dE/dt=dC/dt=dG/dt=d1/dt=0. A steady state for the autonomous system y'=(y) is understood as any point y0
with the property that for every €>0, one can choose a §>0 such that any solution Y(t) of y'=f(y) satisfying
Iy (t)—y0l<d remains within € of y0 for all t>t0. In other words, stability requires the existence of some 50>0
such that if fi(t0)—y0//<60 , then limt—+ooy)(t)=y0. Applying this criterion to the system in Eq. (1) yields five
candidate equilibrium points, listed in Table 1, corresponding to the four steady-state values
(Ee,Ce,Ge,le) produced by the model.

* The third equilibrium, although mathematically acceptable, has no clinical relevance.

E —(0 M2 —mals 0) 2
T "Bry—b,my Bl —bom,’ @

* The fourth equilibrium, representing the state in which the general medical ward is unoccupied, is expressed as
follows:

E,=(ECO0,ID), 3)
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* The fifth, representing the complete dynamical equilibrium, corresponds to the full persistence regime and is
determined by a quartic polynomial of the form shown below:

4
ZA E4 1 =0,04) 4)
i=0

where Ai, i=0,..,4 are the hierarchical parameters.

Table 1. Candidate equilibria of the system in Eq. (1), including both clinically relevant and irrelevant cases.

Value in a

Equilibrium Definition parametrized system Description
E: (Ee, Ce, Ge, Lo) (0,0,0,0) Trivial equilibrium (empty hospital)
E2 (Ee, C., Ge, Lo) (K, 0, 0, Koms) Equilibrium with full hospital resources and active ICU only
Es (Ee, C., Ge, Lo) 0, C,—G, 0) Clinically irrelevant (non-physical) point given in Eq. (2)
E4 (Ee, C., Ge, I¢) (E,C,0,0) General medical ward-free equilibrium given by Eq. (3)
Es (Ee, C., Ge, Lo) (E,C,G,]) Full dynamical (endemic) equilibrium given in Eq. (4)

Qualitative analysis of equilibrium positions
The Jacobian matrix for the four-compartment model is expressed as follows:

11 Q12 A13 A 14
J= A1 A2z A23 A2y
A31 Q32 Q33 A3y
Q41 A4z Q43 Ayg

’

Here, aij, with i,=1,...,4, denote the partial derivatives comprising the Jacobian matrix. The stability of the four
equilibrium points is assessed through the eigenvalues of this matrix. In the next section, we examine the dynamics
associated with each equilibrium.

—2E3b2—EZ%(krb2+4rb,) — 2E(krb . + 1) — kr + aCk + 2}
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System behaviour near the origin E1
A simple analysis indicates that the hyperbolic, or first trivial, equilibrium functions as a stable fixed point.

AEI = (_rrmllermS) (5)

System behaviour near the hospital capacity and ICU equilibrium E2E

Evaluating the Jacobian of the system in Eq. (1) at the non-feasible point E2=(K ,O,O,I;—Z) yields the following
eigenvalues.
kI, — kb -
Ay=-—r, 2=a ! kit Bl Ag=—m,, Ay=-—-mgy 6)

kbi+1 ’

This equilibrium represents a saddle-type configuration. Three of the eigenvalues are negative, showing that
perturbations along these directions will diminish over time, causing trajectories to return toward the equilibrium.
The remaining positive eigenvalue indicates an unstable direction, where small deviations amplify, moving the
system away from the point. Thus, a saddle point is defined by having a mix of stable and unstable directions.

System behaviour near the clinically irrelevant point E3 in Eq. (2)
For the non-feasible point E3=(0,C,—G,0), the Jacobian matrix of Eq. (1) produces eigenvalues that describe the
local dynamics around this equilibrium.

—prl , +rb,m, +am,

A= 7
! Br; —b,m, @
where 42,3 is given in Eq (8) as follows:
1—m m b, + /4B 2T 2m ;m , — 4BT ;b ,m ;m %+ b2m?m?2
Aoz === (®)
' 2 pr,
Ayg=-m3 )

The point of equilibrium is classified as a saddle-focus, combining regions of stability and instability with inherent
oscillations. Real eigenvalues primarily dictate stability, whereas the oscillatory behavior originates from complex
conjugate eigenvalues.
The behavior of the system near the free equilibrium of the general medical ward, E4, can be expressed using Eq.
(3).

For the fourth equilibrium in Eq. (1), where the general medical ward has no occupants (G=0), the corresponding
Jacobian matrix is defined as follows.

—a

L= (10)

Here, a and B represent two sequentially dependent parameters, as defined in Eq. (23) and Eq. (24).

(al' y —bym,)
2akl'1

JaZkF 2m, — a2kl’ 2m  — a%krl" 1b ym ; — akl’ b ym 2 + akl" 1b ym 2

Az,a =*
(11)
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The system exhibits an unstable saddle-focus because the four eigenvalues obtained have mixed signs. This
equilibrium can alternatively be interpreted as a saddle-node or a bifurcation point. Two of the eigenvalues being
negative real numbers indicate stability along two state-space directions, meaning that small deviations in those
directions gradually return to equilibrium. The complex conjugate eigenvalues, one positive and one negative,
produce focus-like dynamics, so trajectories in the vicinity of the equilibrium display spiraling motion.
Dynamics near the full equilibrium E5 are captured by Eq. (4).

The Jacobian matrix J4 = (aij)4*4 appears in Section 4. Denote the roots of the characteristic polynomial of /4 as
Aifori=1, 2,3, 4, given by:

4
ZA,-A‘H =0, (13)
i=0

Here, Ai represent sequentially dependent parameters, with A0 set equal to 1.

A1 =-0a11-0a2p Q33 = A4y (14)

Ay =0a11022+011033F 011044~ Q12021 F 022033+ 022044 Q3032 — Q4047 F 033044  (15)
A3 =—011072033— 011022044+ 11023032 011024047 —A11033044+ 0712021033

T A120210 44— Q12024041 Q22033044+ A23032044— A23034047 (16)

+ Q3403304

Ay=aq,0a 22033044 —A11023032044FA11023034047 = A11024033047 — 012021033044

— 012023034041 Q12024033047 (17)

a7

Using the Routh-Hurwitz approach, a Jacobian matrix has all eigenvalues with negative real parts if the
determinants of all associated Hurwitz matrices are positive. This means that a given equilibrium E is locally
asymptotically stable only when A, >0,A3>0, AA,> A3, and As>
VA1(A1A 4 —A,A ) orequivalently A A ,A5 > A3+ A%A,. In the present case, we have ;<
0 and A ;3 < 0 . Observing the Jacobian entries a ; ,<0, a ,1>0, a ,3<0, a 3,>0, a 33<0, and a 4,,4<0 it can be

concluded that A 1A ,A 3 > A% + A %A , till holds. Therefore, by applying the Routh-Hurwitz conditions, we can
explicitly state the necessary and sufficient requirements for the positive equilibrium to maintain local asymptotic
stability. For clarity, the following notation is introduced.

Soteifa>—0e 4 ey i day,<0ieif —EC < 0and
@i >0bedfa> o St A h oz A =2k, e <0beif mmmp—<0an
C -
>0ie by <—2——and <0if{ <=2 d <0.
ag i.e. b, (1+b1Ee)an ars3 if ¢ c. and a 44

Consequently, E4 is identified as an unstable equilibrium. Trajectories in its neighborhood exhibit spiraling
motion, whose persistence depends on the real parts of the complex eigenvalues. Here, one complex eigenvalue
has a positive real part, and the other a negative one, classifying this equilibrium as a “saddle-point focus.”

68



Miller et al., Modeling Hospital Patient Flow as an Interconnected Compartmental System: Equilibrium and Stability
Analysis

The analysis identified five distinct equilibria. The full dynamical equilibrium is particularly important because it
includes all populations with positive values, and it occurs at E4. This equilibrium reflects the system’s
‘nowcasting’ capability and demonstrates how variations in bed occupancy across departments propagate
throughout the system, affecting both upstream and downstream components (‘forecasting”). Upstream refers to
beds in discharge or mortuary units, while downstream refers to beds in active departments, often called level 3
beds.

We studied the equilibria of the system, labeled (E'1, E2, E3, E4, ES), evaluating their viability under biologically
relevant conditions. To guarantee that the model produces realistic (non-negative) results, all initial conditions are
specified:

E(0),€(0),6(0),1(0)

and parameters:
r,K,a,B,{,my,mymyw

as non-negative values, consistent with their real-world meanings. The components appearing in the equations,

for example:
akEC

1+b,E
are formulated so that they stay non-negative under these assumptions. In addition, the mortality rates:
m,C,m,G,m;l,

The terms are scaled according to the population sizes, ensuring that no variable can drop below zero. Analysis
of the Jacobian eigenvalues shows that the biologically relevant equilibrium E5 is locally stable. Corresponding
numerical simulations confirm that every state variable remains non-negative throughout the system’s
progression. This verifies that the model produces biologically consistent solutions given the chosen parameter
set.

Parameter values investigation

A core objective of modeling population dynamics is to uncover the primary factors controlling system behavior,
enabling predictions of responses to changes in environmental parameters [20]. In the hospital bed framework
represented by Eq. (1), parameters in the base analysis correspond to the actual number of daily patient admissions.
In UK hospitals, high bed occupancy constrains the number of patients admitted over a 24-hour period, as it is
limited by beds becoming available due to discharges and deaths.

Patients arriving at the emergency department (ED) are evaluated for severity. Those requiring admission are
either sent to a general medical ward G or a Covid ward C, based on the median number of transfers from the ED
to wards, denoted by I'l and I'2. Admissions are targeted to occur within 4 hours (a), the standard ‘time to admit.’
Patients whose condition deteriorates in medical wards are escalated to ICU care, with the median number of daily
ICU transfers over the prior week represented by C.

Daily ward-specific mortality reflects patient case mix, with m1, m2, and m3 representing deaths in the general
ward, Covid ward, and ICU, respectively. The total bed availability is calculated as the sum of daily discharges
and deaths (o). Because of limits on physical beds and staff, the threshold for admissions may be adjusted to
prevent overcapacity. Eq. (1) describes patient flow from the ED, where steady-state admissions are determined
by outflows (discharges and deaths) in the absence of Covid.

The next section provides a definition of the exogenous (independent) parameter values:

Numerical simulation results

Time series and phase portraits
The purpose of this section is to support the analytical results by using experimental parameter values obtained
from a clinical consultant with hospital expertise. For the simulations, we employed the 14 parameter values
provided in Table 2, which are used to explore the model in Eq. (1). These values also guided the selection of
initial conditions for the numerical experiments. Another important goal here is to verify the analytical outcomes

e
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(Table 1) through computational simulations. The results reveal several notable characteristics of the system from
a practical standpoint.

Table 2. Descriptions of the parameters and their corresponding units applied in the model presented in Eq. (1).

. Value / .
Parameter Definition alue Units
Range
T Daily admission rate (number of new patients arriving in the past 24 hours) 5 dimensionless
K Hospital carrying capacity (total effective resource/bed capacity) 100 -200  dimensionless
a Transfer rate from Emergency Department (ED) to inpatient wards under 4 hours !
. o ul
low COVID pressure (inverse of average processing time)
g Linear occupancy-to-ICU admission rate coefficient 0.2 dimensionless
Model reduction switch parameter (g = 0 reduces the full model to a special . .
€ . Oorl dimensionless
case; € = 1 retains the full four-compartment model)
I',2 Patient flow (transfer) rates between ED and other hospital departments 4-5 hours™!
8 Fixed daily discharge capac?ty (maximum number of patients that can be 5 dimensionless
discharged per day)
bi,2 Average bed occupancy duration (length of stay) in general wards 1.5-2 days™
mi,2,3 Mortality rate across compartments 1.5 dimensionless
® Patient discharge rate from the hospital (recovery turnover rate) 3.5 dimensionless

Figure 2 illustrates the local stability of the system near the second equilibrium E2. In this scenario, both the
Covid ward and the general medical ward have zero population, and the system reaches a stable state with all
trajectories converging toward the equilibrium. The oscillatory patterns are driven by the second positive root of
the quartic polynomial, which governs the stability of the clinically significant equilibrium E4. For the 24-hour
simulation, these oscillations capture short-term periodic behavior, whereas in the 500-hour simulation, they
continue over a much longer timescale, reflecting extended regulatory influences. Similarly, Figure 6 shows
oscillatory trajectories, highlighting their sensitivity to both the initial conditions and the system’s parameters.

E Phase Portraits
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Figure 2. shows the time series and phase portraits near the equilibrium point corresponding to hospital
resources and the ICU equilibrium E2, given by (H.,W.,G.,C.)=(100,0,0,233.3333333) with {=0.2 and all
other parameters fixed as in Table 2. The trajectories clearly converge to a stable limit cycle.

Figures 4 and 6 present the system’s temporal evolution for the specific case model, with trajectories in HWC

space under three distinct initial conditions:
(He,We,Ge,Ce)=(0.2597,1.2983,0,0.49379), (0.15810,1.5440,7.6186,3.0031), and
(99.9214,0.14818,4.5320,1565.697), using {=0.2 and all other parameters set to their default values. In Figure
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4b, the trajectory converges onto a limit cycle with a period of roughly 500 hours, exhibiting substantial
oscillations in H. These results reveal the system’s inherent instability.
Prior analyses have mainly examined bed usage within individual departments (micro-level), rather than across
the entire hospital system (macro-level). Here, we focus on bed utilization between departments within a hospital
trust, which we term ‘meso-activity.” Figures 4-6 illustrate hospital activity over 24 hours, showing that nearly
all departments operate under control with stable patient movement. Extending the simulation to 500 hours
(approximately 20 days) highlights periodic dynamics, with trajectories forming a limit cycle around the three
feasible, clinically relevant equilibria.
In the UK, emergency cases—including Covid patients—typically enter the hospital either after home assessment
by a clinician (paramedic or occasionally GP) or by presenting at the ED. Triage is then conducted to assess the
urgency of each patient, following a military-inspired classification: those likely to survive without intervention,
those likely to die regardless, and those likely to survive only with intervention.

One-parameter bifurcation behavior

Numerical simulations of the model in Eq. (1) were used to investigate bifurcation behavior. Figure 7 depicts the
local stability diagram around E4 using the parameter values from Table 2. As shown in Figure 7a, if E4<K, the
hospital population increases, while E4>K signals resource shortages. Since E4 depends on (, the equilibrium is
highly sensitive to bed numbers. If E4=K, the hospital population remains stable.

These simulations illustrate the E—~C—G—I clinical model. For specific parameters, the patient population can rise
to very high levels yet eventually stabilize, while emergency population levels remain substantial. In real
scenarios, stochastic fluctuations in patient admissions and life cycles may further increase population numbers,
especially due to Covid and other conditions. Similarly, G and C populations can remain high, although chance
variations in patient turnover may cause temporary decreases.

Heat map for hospital dynamics

To explore how variations in medical resources k affect population dynamics, we examined changes in & and ¢
over 24 hours, presenting the results as a heat map in Figure 7. Cyclic system behavior from Eq. (1) shows that
patient density rises in response to infection surges, and limited resources can increase mortality rates. Short-term
dynamics in the general ward remain stable, supporting the assumption that resource constraints directly influence
patient flow.

The heat map in Figure 8 also highlights extreme responses in patient populations across wards due to variations
in k£ and ¢, and illustrates how altered mortality affects equilibrium. Different levels of viral impact shape the
stabilization of patient densities in each ward. Equilibria to the left of the curve in Figure 8a are unstable, while
Figure 8b shows high densities in the E and C wards, indicated in red. Crossing the saddle-node curve produces
an unstable equilibrium, demonstrating that increased patient flow places additional pressure on hospital resources
and affects population densities in all wards.

Materials and Methods

This study was a cross-sectional study with the aim of comparing sexual satisfaction in women with and without
Candida infection. The study was performed on 160 pregnant women referred to the specialized gynecology clinic,
Shahid Beheshti Hospital, Tehran in 2019 in two groups of 80 patients with and without Candida. The inclusion
criteria were no addiction, no history of neuropsychiatric illness, no medication affecting sexual function, no
physical illness or surgery affecting sexual function, no severe marital conflict such as the threat of divorce and
separation, and no pregnancy exclusion criteria. Non-participation were among the exclusion criteria.

After receiving the code of ethics and obtaining the necessary permits and coordinating with hospital authorities,
the researcher attended various shifts (morning-evening) at the hospital's specialized clinic. Research units were
selected by the researcher in terms of inclusion criteria, screening, and eligible individuals. Participants were fully
informed about the purpose of the study, the confidentiality of the answers, and knowledge of the results of the
study. After obtaining written informed consent, data collection was done in both groups, and the sampling method
was random. Pregnant mothers with Candida infection were diagnosed by a specialist midwife with the genital
examination and clinical symptoms. Unsuspecting pregnant individuals were mothers with none of the clinical
signs and symptoms of Candida infection, such as itching, burning, etc. The data collection tool was a
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questionnaire with two sections. The first section included personal information such as education level,
occupation of the woman, and her spouse, body mass index, housing status, income, and pregnancy status. The
second part of the questionnaire was the Larson Sexual Satisfaction Questionnaire that consisted of 25 items, 13
of which (25, 24, 20, 18, 15, 14,11, 9, 8, 7, 6, 5, 4) were count reversed. The third part of the questionnaire was
about the effect of antibiotics and corticosteroids on the sexual satisfaction of pregnant women infected with
Candida. For this purpose, the Larson questionnaire was used to examine the effect of antibiotics and
corticosteroids on sexual satisfaction in pregnant mothers who had used these drugs for three months. Answering
questions is a Likert five-point (1 = never to 5 = always). The total score of this instrument is in between 25-125.
25-50 score of sexual dissatisfaction, 51-75 score of low sexual satisfaction, 76-100 score of moderate sexual
satisfaction, and 101-125 score of high sexual satisfaction. This questionnaire was used in the study of Bahrami
et al. (2016), with Cronbach's alpha coefficient of greater than 0.7. Its validity and reliability were determined for
positive and negative questions, and it was determined that this questionnaire could be used in the Iranian
population to measure sexual satisfaction. The research units in each group completed the Larsson Personal
Information, and Sexual Satisfaction Questionnaires separately also the research units completed the
questionnaires separately for privacy purposes. It took about 15 minutes to complete the questionnaires. After data
collection, the data were analyzed by SPSS software and independent t-test. Finally, the relationship between the
two concepts of sexual satisfaction and candidiasis in pregnant women was assessed.

Ethical considerations

Ethical considerations included providing information about the study, duration of the study, purpose, and type of
study, obtaining informed written consent from pregnant mothers, ensuring the confidentiality of information, and
being free to participate or not participating at any stage of the study.

Statistical analysis

Data were analyzed by SPSS software using an independent t-test. Frequency, percentage, mean, standard
deviation, minimum, and maximum were determined using descriptive statistics. Independent t-test was used to
compare sexual satisfaction scores between the two groups.

Results and Discussion

Since the pioneering work of Freedman [21, 22], Holling type II functional response models have been widely
explored to better understand system dynamics and behaviours. More recent studies, including Freedman [23],
focus on identifying periodic oscillations and assessing how the functional response shapes these dynamics [24].
In this study, we investigate the direction of trajectories by solving the model in Eq. (1). Table 1 summarizes key

------------

analytical results, while additional numerical outcomes were generated using MATLAB’s 0:X:D:x Eix 45 solver.
The system in Eq. (1) presents four hyperbolic equilibria that are clinically relevant and one that is not feasible,
E3. Equilibrium E'1 corresponds to the extinction of all hospital populations and is consistently stable. Equilibrium
E?2 occurs when the ED is at maximum occupancy, while the Covid ward and general medical ward remain empty,
and ICU occupancy is limited; this state is also stable. Equilibrium E3 is not clinically meaningful because it
produces a negative population for at least one department. The clinically relevant equilibrium E4 is derived from
a quartic polynomial with four real roots—two negative and three positive—all of which support surviving
populations. Each positive root exhibits distinct dynamic behaviour.

The E4 equilibrium acts as a saddle-focus, combining stable and unstable components with oscillatory motion.
Stability is governed by the real eigenvalues, whereas the complex conjugate eigenvalues drive the oscillations.
Figures 4a and 4b display the general medical ward free equilibrium, while Figures 4c and 4d depict the first
positive root of the quartic polynomial—clinically relevant E4—over 24-hour and 500-hour periods, as specified
in Eq. (13), with all other parameters set according to Table 2.

The parameters in Table 2 generate a variety of system behaviours even within a narrow range of { values.
Stability patterns can be classified into four types based on population dynamics or limit-cycle behaviour [25].
An ‘unstable spiral’ emerges when trajectories diverge from initial conditions, producing unbounded oscillations.
Our simulations reveal that this oscillatory region persists across the parameter ranges listed in Table 2, consistent
with results in [22].
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The oscillations in the hospital model primarily result from the ICU bed functional response (C), which plays a
critical role in system dynamics and has clinical significance [22]. Prior work [26] shows that even a simple
reaction-diffusion model can reproduce complex oscillatory dynamics by focusing on trophic interactions.
Interestingly, the limit-cycle behaviour observed with linear mortality functions for the Covid ward (W), general
ward (G), and ICU (C) may disappear if quadratic mortality functions are applied to G and C. Numerical

------------

simulations using 0:%:D: X E: %45 confirm this. Figure 2 presents the time series (Figure 2a) and phase portraits
(Figure 2b) near the ICU and hospital resource equilibrium E2, with { = 0.2 and all other parameters fixed as in
Table 2, showing convergence onto a stable limit cycle. Figure 3 illustrates the system near the general ward free
equilibrium E3, with the same parameters, where trajectories converge to an unstable limit cycle, displaying

oscillatory behaviour as shown in Figures 3a and 3b.
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Figure 3. shows the system’s trajectories near the general ward free equilibrium E3, defined by
(He,We,Ge,C.)=(0.02597402597,1.298363974,0,0.4934840052) with {= 0.2, while keeping all other
parameters as listed in Table 2. In this configuration, the system evolves toward an unstable limit cycle, with
clear oscillatory fluctuations observable in the time series and phase portraits.

The dynamics become more pronounced in Figures 4a—4d, where the clinically relevant equilibrium shows
instability when {=2.3. Similarly, Figures 5a—5d illustrate the behaviour associated with the second positive root
of the quartic polynomial, corresponding to equilibrium E4 over both 24-hour and 500-hour periods. Figure 6
confirms analogous patterns, demonstrating persistent oscillatory dynamics and highlighting the unstable nature
of this clinically significant state.
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Figure 4. presents the evolution of the system for the general medical ward free equilibrium. The time series

and phase-space paths in panels 4(a)

and 4(b) correspond to the chosen initial conditions for this equilibrium.

Panels 4(c) and 4(d) display the behaviour associated with the first positive root of the quartic polynomial,

representing the clinically significan

t equilibrium E4, over 24-hour and 500-hour simulations as specified in

Eq. (13). All other parameters remain fixed according to the values in Table 2.
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Figure 5. Time series and phase-space trajectories near the proposed initial condition for the second positive
root of the quartic polynomial, corresponding to the clinically relevant equilibrium E4, for durations of 24
hours and 500 hours. This equilibrium is defined in Eq. (13), with all other parameters maintained as

specified in Table 2.
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Figure 6. Time series and phase-space trajectories near the proposed initial condition for the third positive
root of the quartic polynomial, representing the clinically relevant equilibrium E4 over 24-hour and 500-hour

intervals. Eq. (13) defines this equilibrium, and all other parameters remain as in Table 2.

The model described by Eq. (1) shows an unstable region in the vicinity of Hopf bifurcations for the parameter
set K=20, r=4.455, {=2.3, and w=1.5. Nevertheless, it does not reproduce dynamics consistent with the
enrichment paradox. Increasing the hospital's core resources K drives the system through unstable states; however,
larger populations in both W and € maintain instability at higher K values. This behavior provides detailed insight
into the interplay among the three hospital departments.

Conclusion

The main objective of this work is to deepen the understanding of hospital dynamics as described by Eq. (1). The
study confirms the presence of periodic oscillations in the system and assesses how viral dynamics influence
hospital operation. It emphasizes the importance of comprehending COVID-19 transmission effects within
hospital ward structures. Trajectories were analyzed by solving Eq. (1), and Table 1 summarizes the numerical
outcomes obtained using MATLAB’s ODE45 solver. The model identifies four hyperbolic, clinically feasible
equilibria along with a single non-viable equilibrium, E3. The first equilibrium, E1, represents complete
population extinction (empty hospital) and is always unstable. This analysis aims to enhance understanding of
hospital dynamics during the COVID-19 pandemic under limited bed capacity conditions. Equilibrium E2 occurs
when patients in E are maximized while € and G populations vanish, constraining COVID-19 spread, which
renders it unstable (Section 4). Equilibrium E3 corresponds to persistent patient presence and virus spread despite
depletion of hospital resources. The fourth equilibrium, E4, reflects coexistence where all ward populations are
present, as detailed in Section 3.

Parameter choices from Table 2 allow observation of diverse behaviors within a narrow ¢ range. System stability
can be categorized into four classes based on E—C—G—I population dynamics or limit-cycle behavior [25]. An
unstable spiral emerges from the initial conditions, producing unbounded population oscillations. This oscillatory

e
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region is demonstrated in the four-species model and persists under the parameter set in Table 2. Oscillations in
the E—C—G—I model highlight the challenges of using Holling type II functional responses in clinical settings, as
they capture realistic saturation effects: patient transfer rates slow as ward capacity is approached. If quadratic
mortality functions replace linear ones, observed limit-cycle behavior may not occur [24].

Numerical results in Figure 7, computed via ODE45 for various equilibria, show that the coexistence equilibrium
becomes unstable when {=0.001. Here, a neutral center manifests as a closed loop with undamped oscillations. A
stable spiral slowly converges to equilibrium, with population oscillations gradually decreasing until stability is
reached. These findings will be validated using actual hospital patient flow data.

100 | e ] 10
80 |
B
60|
u 5]
40| 6 - s
207 .
'U |imsmamr e e - 4 -
0 0.05 0.1 0 0.05 0.1
g ¢
a) b)
101 - — 2.5 e
8 T 2
6t ‘ 1 1.5]
41 1
2t - 0.5 - e TR
e : S 0! : :
0 0.05 01 0 0.05 0.1
q [
c) d)
Figure 7. Clinically significant equilibrium with respect to {, considered as the hospital bed capacity
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Figure 8. Heat map illustrating hospital dynamics and stability over a 24-hour period, showing the system’s
maximum equilibrium (£,,C.,G,,I.) for varying values of K and . Figure 8a displays the heat map for the
emergency department EEE, highlighting sustained high population levels, indicated by the red coloration.

Figure 8d depicts the ICU, where the population remains low due to limited bed availability.
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