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ABSTRACT 

Efficiently directing patient movement within hospitals is essential for delivering effective secondary care. By 

treating a hospital as a set of linked compartments through which patients transition, we formulate equations that 

describe these flows as a network of interdependent dynamic processes. Many influences shape these 

interactions—some identifiable, many interacting in complex ways. Unlike discrete-event or agent-based 

methods, this approach does not require detailed knowledge of every underlying factor; instead, it focuses on the 

overall transfers between units, consistent with a system-dynamics framework. Using this perspective, we identify 

two equilibrium conditions: a trivial state in which no patients are present, and a non-trivial state representing 

ongoing activity. We intend to analyse bed-occupancy data from a UK hospital to test the validity of this approach 

and evaluate how widely it can be applied. 
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Introduction 

The National Health Service (NHS) in the United Kingdom is under significant strain, particularly regarding the 

availability of hospital beds. A key contributor to challenges in secondary (hospital) care is that the UK maintains 

one of the lowest counts of hospital beds per capita among OECD nations [1]. Consequently, managing the 

progression of patients through hospitals has become increasingly difficult. The combined effect of limited 

capacity and growing demand led to bed-occupancy figures rising from 87.7% in quarter 3 of 2010/11 to 92% in 

Q3 of 2019/20—just before the pandemic [2]. 

As secondary care grows more complicated, bed numbers often emerge as the main constraint on service delivery. 

Improving the effectiveness of bed utilization (and reducing associated opportunity costs) is therefore crucial for 

decision-makers. Although numerous attempts have been made to model bed use within specific departments 

(micro-level) or across broader healthcare systems (macro-level), only a small number of models provide a 

dependable, whole-hospital representation that follows patients from admission through discharge or death while 

accounting for interactions among clinical areas. Individuals with serious conditions (such as COVID-19, 

hereafter Covid) enter, move through, and exit hospitals. By regarding the hospital as a system composed of 

several compartments, our aim is to derive equations describing how these areas interact dynamically. These 

interconnections depend on many variables—some measurable, others mutually dependent. The central research 

question here is: How can a dynamical-systems framework be used to represent patient transitions across hospital 

departments so as to enhance bed utilization and inform resource planning? The motivation for this work stems 

from the fact that existing frameworks frequently concentrate on particular units or narrow situations (for instance, 

emergency departments or Covid-related flows) and thus fail to portray the hospital-wide dynamics that shape 

overall capacity. 
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We cannot, and need not, identify every driver influencing these flows—as required in discrete-event or agent-

based approaches—and instead attend to the aggregate movements between compartments, consistent with a 

system-dynamics methodology. 

Background 

Given sustained pressure on bed availability, hospital administrators continually look for strategies that improve 

their use. Doing so requires understanding the principal patient groups and the way they progress through the 

system. More than fifty years ago, mathematical modelling was proposed as a means of supporting improved bed 

management [3]. A variety of deterministic, stochastic, multistage, and algorithmic techniques have since been 

applied, each with limitations. Examples include: concentrating on elective admissions [4, 5]; restricting analysis 

to a single, often highly specialized, ward [6–10]; addressing only part of the clinical workload without defining 

patient categories [11]; or focusing on medium-term capacity planning for an entire hospital [12] or an urban 

health network [13, 14]. Among the more comprehensive attempts was StratBAM [15], developed for a U.S. 

hospital equipped with complete electronic records—conditions that differ markedly from NHS settings. The lone 

systematic review of simulation models in this domain examined patient flow specifically within UK emergency 

departments [8], and even within that narrow focus, the evidence base was described as “small and poorly 

developed.” 

The Covid pandemic magnified these pressures worldwide, inspiring numerous investigations aimed at predicting 

bed requirements. Although these studies varied in scope, most did not address all general medical admissions 

(Covid and non-Covid) within a single hospital. A systematic review on surge-capacity planning identified 690 

publications, but only six models capable of projecting both case volumes and capacity needs over time [16]. 

None investigated patient-movement patterns inside hospitals. Other research concentrated solely on Covid-

related resource requirements (primarily to guide the use of limited intensive-care capacity) [17], or explored 

hospital-bed efficiency at a national scale [18], or examined planning for new-bed construction [19]. 

General model and description 

To explore how delays in admission queues might influence mortality, we outline the connections among the 

compartments shown in Figure 1 as follows: 

 Direct effects 

There is strong observational support for the relevance of: 

• The volume of beds allocated to and occupied by medical patients, as opposed to those used by other 

specialties—such as surgery, orthopaedics, gynaecology, and so on (as previously noted), and 

• The daily total of patients taken on by the medical on-call team within a 24-hour window. Individuals admitted 

under the medical service typically represent a reasonably consistent mixture of conditions (e.g., myocardial 

infarction, stroke, diabetic complications, infections). Although this distribution shifts across days and seasons, it 

tends to remain quite steady across longer timescales (year-to-year). It is also well documented that emergency-

admission numbers vary with the day of the week, with weekdays showing more than double the volume of 

weekend admissions. 

 Indirect effects 

Reduced throughput in the ED may reflect wider cultural or resource-related issues. For instance, weaknesses in 

local organisational leadership might impede performance across multiple departments. Likewise, difficulties 

within regional social-care services may delay transfers of patients who are medically fit for discharge, affecting 

all wards—including the ED (i.e., vectors 1–4 in (Figure 1))—a pattern currently common across many NHS 

hospitals. 
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Figure 1. This schematic illustrates the dynamic balance among hospital units, beginning with entry through 

the emergency department (E), progressing through the wards (G, C, I), and ending in discharge (H) or death 

(M). 

During the pandemic period (up to March 2024), the weekly number of hospitalised Covid patients in England 

ranged from 45 to 3800. Across 2020–2021, emergency medical admissions averaged roughly 7,300, and during 

the largest wave of Covid infections, the doubling time for admissions in early March was 26 days, while the 

halving time in April was 20 days. Admission numbers are highly dependent on the quantity of unoccupied beds 

on a given day (as admitting thresholds are adjusted accordingly). The proportion of Covid admissions naturally 

tracks the prevailing level of community transmission. We assume that knowing the current hospital census and 

available capacity enables estimation of the number of patients who will require critical-care support (i.e., ICU 

beds) over the next 24 hours. Since shifts in non-epidemic case mix occur over months to years, whereas epidemic 

dynamics evolve within days—and because our focus is a 24-hour timescale—we treat non-epidemic case mix as 

effectively constant. The components of the model are summarised in Figure 1, and can be expressed in Eq. (1) 

as follows: 

𝑑𝐸

𝑑𝑡
= 𝐹  1(𝐸, 𝐶) = 𝑟𝐸 (1 −

𝐸

𝐾
) −

𝑎𝐸𝐶

1 + 𝑏 1𝐸,
 

𝑑𝐶

𝑑𝑡
= 𝐹  2(𝐸, 𝐶, 𝐺, 𝐼) =

𝛤 1𝑎𝐸𝐶

1 + 𝑏 1𝐸
− 𝑚 1𝐶 −

𝛽𝐺𝐶

1 + 𝑏 2𝐶
(1 +

𝜁𝐼

1 + 𝜖𝐼
), 

𝑑𝐺

𝑑𝑡
= 𝐹  3(𝐶, 𝐺, 𝐼) =

𝛤 2𝛽𝐼𝐶

1 + 𝑏 2𝐶
(1 +

𝜁𝐼

1 + 𝜖𝐼
) − 𝑚 2𝐺, 

𝑑𝐼

𝑑𝑡
= 𝐹  4(𝐸, 𝐶, 𝐼) =

𝛽𝑎𝐸𝐶

1 + 𝑏 1𝐸
− 𝑚 3𝐼 + 𝜔𝐸. 

(1) 

Here 𝐹𝑖, 𝑖=1,2,3,4 denotes the interaction terms that shape the behaviour of the model. The endogenous 

(dependent) variables are defined as follows: 

• E – population in the emergency department 

• C – occupancy of the specialist ward(s) (in this context, the Covid ward) 

• G – number of patients in the general medical ward 

• I – ICU population 

• H – individuals at home (represented implicitly through the ωE  component) 

• m – mortality 

The initial conditions for the system in Eq. (1) are set so that (0)≥0, 𝐶(0)≥0, 𝐺(0)≥0, and 𝐼(0)≥0. The model 

outlines how patients enter the ED, a process driven both by infection prevalence and by hospital outflow 

(discharges plus deaths) once Covid pressure subsides. The parameter r captures admission volume, a represents 
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the rate at which patients are processed from the ED to the Covid ward (C), and when infection levels are low, a 

functions as a half-saturation constant. The quantity β  specifies the linear flow into the ICU (I). The parameters 

Γ𝑖 𝑖=1,2, describe transitions between E and the other departments. The symbol ζ  reflects day-to-day variation in 

virus transmission within the ED population. The parameter ϵ is central to simplifying the full four-compartment 

framework into a reduced special-case model. Mortality parameters 𝑀𝑖,=1,2,3 give the death rates, while ω In Eq. 

(1), the first component uses a logistic structure to describe daily hospital activity. Here, K represents total hospital 

capacity, and rE includes all medical admissions—heart attacks, strokes, sepsis, seizures, diabetic complications, 

etc.—whose long-term proportions remain comparatively stable. The combined recruitment rate of susceptible 

patients and natural mortality is expressed as 𝛼=𝑟−𝑑. The total in-hospital population is summarised as 𝐸=𝐶+𝐺+𝐼, 

where C corresponds to the Covid ward, G to the general medical ward, and I to the ICU. Although the hospital 

could be expressed with seven separate compartmental equations, the framework here is condensed into four. The 

second component of the first equation applies a Holling type II response to describe transfers from admission (E) 

to the Covid department (C). 

The confirmed infected population in I (the ICU) can also be represented using a Holling type II response. Here, 

Γ1 acts as the transition parameter governing movement from C to I. Mortality 𝑀 appears in the second, third, 

and fourth equations of Eq. (1), reflecting deaths in multiple departments. In reality, these rates depend on factors 

such as recovery times, the number of infectious patients requiring care, and bed occupancy during peak demand. 

The third term introduces additional mortality, with βC quantifying Covid-related effects on ICU patients; the 

infected population in ICU can reach a saturation level adjusted by the factor (1+𝜖𝐶). The second and third 

equations in the system describe patient movement from C to G using a Holling type II term with parameter 𝑎 

which reflects transfer time between departments. 

The final equation represents the main hospital pathway during Covid conditions. The first term captures patient 

movement between the ICU and rehabilitation units, with E denoting ED inflow, 𝜔 representing the recovery or 

discharge rate, and 𝑀 denoting daily mortality. Any hospital contains at least seven functional compartments, and 

movement across them is influenced by several factors, including: 

• Administrative workflow and service quality, represented through the logistic component in Eq. (1). 

• Workforce capacity—affected by issues such as staff illness—embedded in the resource parameter 𝐾. 

• Severity of illness or infection in Covid cases, modelled in the second equation of Eq. (1). 

• Ward-specific capacity (beds and space), reflected in the third and final equation of Eq. (1). 

Analysis of the model equilibrium 

This section gives a detailed examination of the system’s behaviour and the equilibrium structure derived from 

Eq. (1). We produce explicit analytical forms for locating equilibria and for determining their stability under 

general parameter choices, and then evaluate outcomes for the specific cases 𝐾=500 and 𝐾=100. The following 

section broadens this to the entire interval 0≤𝐾≤1000. 

Location of equilibria 

The equilibrium configurations 𝐸(𝑡)=𝐸𝑒, 𝐶(𝑡)=𝐶𝑒, 𝐺(𝑡)=𝐺𝑒  and 𝐼(𝑡)=𝐼𝑒 f Eq. (1) arise when 

𝑑𝐸/𝑑𝑡=𝑑𝐶/𝑑𝑡=𝑑𝐺/𝑑𝑡=𝑑𝐼/𝑑𝑡=0. A steady state for the autonomous system 𝑦′=(𝑦) is understood as any point 𝑦0 

with the property that for every 𝜖>0, one can choose a 𝛿>0 such that any solution 𝜓(𝑡) of 𝑦′=𝑓(𝑦) satisfying 

‖𝜓(𝑡)−𝑦0‖<𝛿 remains within 𝜖 of 𝑦0 for all 𝑡≥𝑡0. In other words, stability requires the existence of some δ0>0 

such that if ∥ψ(t0)−y0∥<δ0 , then lim𝑡→+∞𝜓(𝑡)=𝑦0. Applying this criterion to the system in Eq. (1) yields five 

candidate equilibrium points, listed in Table 1, corresponding to the four steady-state values 

(𝐸𝑒,𝐶𝑒,𝐺𝑒,𝐼𝑒) produced by the model. 

• The third equilibrium, although mathematically acceptable, has no clinical relevance. 

𝐸 3 = (0,
𝑚 2

𝛽𝛤 2 − 𝑏 2𝑚 2
,

−𝑚 1𝛤 1
𝛽𝛤 2 − 𝑏 2𝑚 2

, 0) (2) 

• The fourth equilibrium, representing the state in which the general medical ward is unoccupied, is expressed as 

follows: 

𝐸 4 = (𝐸, 𝐶, 0, 𝐼), (3) 
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𝐸 =
1

𝑎𝛤 1 − 𝑏 1𝑚 1

𝑚 2
𝛽𝛤 2 − 𝑏 2𝑚 2

, 𝐶 =
𝑟𝛤1(𝑎𝑘𝛤1 − 𝑘𝑏1𝑚1 − 𝑚1)

𝑘(𝑎𝛤 1 − 𝑏 1𝑚 1) 2
, 

𝐺 = 0, 

𝐼 =
𝑚 1(𝑎𝛽𝑘𝑟𝛤 1 − 𝛽𝑘𝑟𝑏 1𝑚 1 + 𝑎𝑘𝜔𝛤 1 − 𝑘𝜔𝑏 1𝑚 1 − 𝛽𝑟𝑚 1)

𝑘𝑚 3(𝑎𝛤 1 − 𝑏 1𝑚 1) 2
. 

• The fifth, representing the complete dynamical equilibrium, corresponds to the full persistence regime and is 

determined by a quartic polynomial of the form shown below: 

∑ 𝐴 𝑖𝐸 𝑒
4−𝑖 = 0,

4

𝑖=0

(4) (4) 

where 𝐴𝑖, 𝑖=0,..,4 are the hierarchical parameters. 

Table 1. Candidate equilibria of the system in Eq. (1), including both clinically relevant and irrelevant cases. 

Equilibrium Definition 
Value in a 

parametrized system 
Description 

E₁ (Eₑ, Cₑ, Gₑ, Iₑ) (0, 0, 0, 0) Trivial equilibrium (empty hospital) 

E₂ (Eₑ, Cₑ, Gₑ, Iₑ) (K, 0, 0, Kωₘ₃) Equilibrium with full hospital resources and active ICU only 

E₃ (Eₑ, Cₑ, Gₑ, Iₑ) (0, C, −G, 0) Clinically irrelevant (non-physical) point given in Eq. (2) 

E₄ (Eₑ, Cₑ, Gₑ, Iₑ) (E, C, 0, I) General medical ward-free equilibrium given by Eq. (3) 

E₅ (Eₑ, Cₑ, Gₑ, Iₑ) (E, C, G, I) Full dynamical (endemic) equilibrium given in Eq. (4) 

Qualitative analysis of equilibrium positions 

The Jacobian matrix for the four-compartment model is expressed as follows: 

𝐽 = [

𝑎 11  𝑎 12  𝑎 13  𝑎 14

𝑎 21  𝑎 22  𝑎 23  𝑎 24
𝑎 31 𝑎 32  𝑎 33  𝑎 34 
𝑎 41 𝑎 42  𝑎 43  𝑎 44

], 

Here, 𝑎𝑖𝑗, with 𝑖,=1,...,4, denote the partial derivatives comprising the Jacobian matrix. The stability of the four 

equilibrium points is assessed through the eigenvalues of this matrix. In the next section, we examine the dynamics 

associated with each equilibrium. 

𝑎 1,  1 =
−2𝐸 3𝑟𝑏 1

2 − 𝐸 2(𝑘𝑟𝑏 1
2 + 4𝑟𝑏 1) − 2𝐸(𝑘𝑟𝑏 1 + 𝑟) − 𝑘𝑟 + 𝑎𝐶𝑘 + 2}

𝑘(𝐸𝑏 1 + 1) 2
 

𝑎 1,2 = −
𝑎𝐸

(𝐸𝑏 1 + 1)
 

𝑎 1,3 = 0,  𝑎 1,4 = 0 

𝑎 2,1 =
𝛤 1𝑎𝐶(1 + 𝑏 1𝐸) − 𝛤 1𝑎𝐸𝐶 ⋅ 𝑏 1

(1 + 𝑏 1𝐸) 2
 

𝑎 2,2 =
𝛤 1𝑎𝐸𝐶

1 + 𝑏 1𝐸
− 𝑚 1𝐶 −

𝛽𝐺(1 + 𝑏 2𝐶) − 𝛽𝐺𝐶 ⋅ 𝑏 2
(1 + 𝑏 2𝐶) 2

(1 +
𝜁𝐼

1 + 𝜖𝐼
) 

𝑎 2,3 = −
𝛽𝐶

𝐶𝑏 2 + 1
+

𝛽𝐶(𝜁)𝐼

(1 + 𝐼)(𝐶𝑏 2+)
 

𝑎 2,4 =
𝛽𝐺𝐶𝜁

(1 + 𝐼) 2(𝐶𝑏 2 + 1)
 

𝑎 3,1 = 0 

𝑎 3,2 =
𝛤 1𝑎𝐸𝐶

1 + 𝑏 1𝐸
− 𝑚 1𝐶 −

𝛽𝐺(1 + 𝑏 2𝐶) − 𝛽𝐺𝐶 ⋅ 𝑏 2
(1 + 𝑏 2𝐶) 2

(1 +
𝜁𝐼

1 + 𝜖𝐼
) 

𝑎3,3 = −𝑚2 

𝑎 3,4 =
𝛤 2𝛽𝐶(1 + 𝑏 2𝐶) − 𝛤 2𝛽𝐼𝐶 ⋅ 𝑏 2

(1 + 𝑏 2𝐶) 2
⋅

𝜁(1 + 𝜖𝐼) − 𝜁𝐼 ⋅ 𝜖

(1 + 𝜖𝐼) 2
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𝑎 4,1 =
𝛽𝑎𝐶

𝐸𝑏 1 + 1
−

𝛽𝑎𝐸𝐶𝑏 1
(𝐸𝑏 1+) 2

+ 𝜔 

𝑎 4,2 =
𝛽𝑎𝐸

𝐸𝑏 1 + 1
 

𝑎4,3 = 0 

𝑎 4,4 = −𝑚 3 

System behaviour near the origin E1 

A simple analysis indicates that the hyperbolic, or first trivial, equilibrium functions as a stable fixed point. 

𝜆 𝐸1 = (−𝑟, 𝑚 1, 𝑚 2, 𝑚 3) (5) 

System behaviour near the hospital capacity and ICU equilibrium E2E 

Evaluating the Jacobian of the system in Eq. (1) at the non-feasible point 𝐸2=(𝐾,0,0,
𝑲𝝎

𝑴𝟑
)  yields the following 

eigenvalues. 

𝜆 1 = −𝑟, 𝜆 2 =
𝑎𝑘𝛤 1 − 𝑘𝑏 1𝑚 1 − 𝑚 1

𝑘𝑏 1 + 1
, 𝜆 3 = −𝑚 2, 𝜆 4 = −𝑚 3        (6) 

This equilibrium represents a saddle-type configuration. Three of the eigenvalues are negative, showing that 

perturbations along these directions will diminish over time, causing trajectories to return toward the equilibrium. 

The remaining positive eigenvalue indicates an unstable direction, where small deviations amplify, moving the 

system away from the point. Thus, a saddle point is defined by having a mix of stable and unstable directions. 

System behaviour near the clinically irrelevant point E3 in Eq. (2) 

For the non-feasible point 𝐸3=(0,𝐶,−𝐺,0), the Jacobian matrix of Eq. (1) produces eigenvalues that describe the 

local dynamics around this equilibrium. 

𝜆 1 = −
−𝛽𝑟𝛤 2 + 𝑟𝑏 2𝑚 2 + 𝑎𝑚 2

𝛽𝛤 2 − 𝑏 2𝑚 2
 (7) 

where 𝜆2,3 is given in Eq (8) as follows: 

𝜆 2,3 = ±
1

2

−𝑚 1𝑚 2𝑏 2 + √4𝛽 2𝛤 2
2𝑚 1𝑚 2 − 4𝛽𝛤 2𝑏 2𝑚 1𝑚 2

2 + 𝑏 2
2𝑚 1

2𝑚 2
2

𝛽𝛤 2
 (8) 

 

𝜆 4 = −𝑚 3 (9) 

The point of equilibrium is classified as a saddle-focus, combining regions of stability and instability with inherent 

oscillations. Real eigenvalues primarily dictate stability, whereas the oscillatory behavior originates from complex 

conjugate eigenvalues. 

The behavior of the system near the free equilibrium of the general medical ward, 𝐸4, can be expressed using Eq. 

(3). 

For the fourth equilibrium in Eq. (1), where the general medical ward has no occupants (𝐺=0), the corresponding 

Jacobian matrix is defined as follows. 

𝜆 1 =
−𝛼

𝛽
  (10) 

Here, α and β represent two sequentially dependent parameters, as defined in Eq. (23) and Eq. (24). 

𝜆 2,3 = ±
(𝑎𝛤 1 − 𝑏 1𝑚 1)

2𝑎𝑘𝛤1
 

√𝑎2𝑘𝛤  2𝑚 1 − 𝑎2𝑘𝛤  2
2𝑚 1 − 𝑎2𝑘𝑟𝛤 1𝑏 1𝑚 1 − 𝑎𝑘𝛤 1𝑏 1𝑚 1

2 + 𝑎𝑘𝛤 1𝑏 1𝑚 1
2 

(11) 
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+𝑘𝑟𝑏 1
2𝑚 1

2 + 𝑟𝑚 1𝑎𝛤 1 + 𝑟𝑏 1𝑚 1
2 − 4𝑎 4𝑘 2𝑟𝛤 1

4𝑚 1 

+𝑎 4𝑘 2𝛤 1
4𝑚 1

2 − (2𝑎  4𝑘 2𝛤 1
4𝑚 1

2 + 𝑎  4𝑘 2𝛤 1
4𝑚 1

2 + 2𝑎 3𝑘 2𝑟𝛤 1
3𝑏 1𝑚 1

2 

+10𝑎 3𝑘 2𝑟𝛤 1
2𝛤 1𝑏 1𝑚 1

2 − 2𝑎 3𝑘 2𝛤 1
3𝑏 1𝑚 1

3 + 4𝑎 3𝑘 2𝛤 1
3𝑏 1𝑚 1

3 − 2𝑎 3𝑘 2𝛤 1
3)𝑏 1𝑚 1

3 

𝑎2𝑘 2𝑟 2𝛤 1
2𝑏 1

2𝑚 1
2 − 4𝑎 2𝑘 2𝑟𝛤 1

2𝑏 1
2𝑚 1

3 − (8𝑎 2𝑘 2𝑟𝛤 1
2)𝑏 1

2𝑚 1
3 + 𝑎 2𝑘 2𝛤 1

2𝑏 1
2𝑚 1

4 

−(2𝑎2𝑘 2𝛤 1
2𝑏 1

2𝑚 1
4 + 𝑎2𝑘 2𝛤 1

2𝑏 1
2𝑚 1

4 − 2𝑎𝑘 2𝑟 2𝛤 1𝑏 1
3𝑚 1

3 + 2𝑎𝑘 2𝑟𝛤 1𝑏 1
3𝑚 1

4 + 2𝑎𝑘 2𝑟𝛤 1𝑏 1
3𝑚 1

4 

+𝑘 2𝑟 2𝑏 1
4𝑚 1

4 − 2𝑎 3𝑘𝑟𝛤 1
3𝑚 1

2 + 6𝑎 3𝑘𝑟𝛤 1
2𝛤 1)𝑚 1

2 − 2𝑎 2𝑘𝑟 2𝛤 1
2𝑏 1𝑚 1

2 − (8𝑎 2𝑘𝑟 𝛤 1
2 1𝑚 1

3 

+2𝑎𝑘𝑟𝛤 1𝑏 1
2𝑚 1

4 + 2𝑎𝑘𝑟𝛤 1𝑏 1
 𝑚 1

4 + 2𝑘𝑟 2𝑏 1
3𝑚 1 + 𝑎2𝑟 2𝛤 1

2𝑚 1
2 + 2𝑎𝑟 2𝛤 1𝑏 1

 𝑚 1 + 𝑟 2𝑏 1𝑚 1. 

 

 

𝜆 4 = −𝑚 3 (12) 

The system exhibits an unstable saddle-focus because the four eigenvalues obtained have mixed signs. This 

equilibrium can alternatively be interpreted as a saddle-node or a bifurcation point. Two of the eigenvalues being 

negative real numbers indicate stability along two state-space directions, meaning that small deviations in those 

directions gradually return to equilibrium. The complex conjugate eigenvalues, one positive and one negative, 

produce focus-like dynamics, so trajectories in the vicinity of the equilibrium display spiraling motion. 

Dynamics near the full equilibrium 𝐸5 are captured by Eq. (4). 

The Jacobian matrix 𝐽4 = (𝑎𝑖𝑗)4×4 appears in Section 4. Denote the roots of the characteristic polynomial of 𝐽4 as 

𝜆𝑖 for 𝑖 = 1, 2, 3, 4, given by: 

∑ 𝐴 𝑖𝜆 4−𝑖 = 0

4

𝑖=0

, (13) 

Here, 𝐴𝑖 represent sequentially dependent parameters, with 𝐴0 set equal to 1. 

𝐴 1 = −𝑎 1,1 − 𝑎 2,2 − 𝑎 3,3 − 𝑎 4,4. (14) 

 

𝐴 2 = 𝑎 1,1𝑎 2,2 + 𝑎 1,1𝑎 3,3 + 𝑎 1,1𝑎 4,4 − 𝑎 1,2𝑎 2,1 + 𝑎 2,2𝑎 3,3 + 𝑎 2,2𝑎 4,4 − 𝑎 2,3𝑎 3,2 − 𝑎 2,4𝑎 4,2 + 𝑎 3,3𝑎 4,4. (15) 

 

𝐴 3 = −𝑎 1,1𝑎 2,2𝑎 3,3 − 𝑎 1,1𝑎 2,2𝑎 4,4 +  1,1𝑎 2,3𝑎 3,2 + 𝑎 1,1𝑎 2,4𝑎 4,2 − 𝑎 1,1𝑎 3,3𝑎 4,4 + 𝑎 1,2𝑎 2,1𝑎 3,3

+ 𝑎 1,2𝑎 2,1𝑎 4,4 − 𝑎 1,2𝑎 2,4𝑎 4,1 − 𝑎 2,2𝑎 3,3𝑎 4,4 + 𝑎 2,3𝑎 3,2𝑎 4,4 − 𝑎 2,3𝑎 3,4𝑎 4,2

+ 𝑎 2,4𝑎 3,3𝑎 4,2. 

(16) 

 

𝐴 4 = 𝑎 1,1𝑎 2,2𝑎 3,3𝑎 4,4 − 𝑎 1,1𝑎 2,3𝑎 3,2𝑎 4,4 + 𝑎 1,1𝑎 2,3𝑎 3,4𝑎 4,2 − 𝑎 1,1𝑎 2,4𝑎 3,3𝑎 4,2 − 𝑎 1,2𝑎 2,1𝑎 3,3𝑎 4,4

− 𝑎 1,2𝑎 2,3𝑎 3,4𝑎 4,1 + 𝑎 1,2𝑎 2,4𝑎 3,3𝑎 4,1.   (17) 
(17) 

Using the Routh-Hurwitz approach, a Jacobian matrix has all eigenvalues with negative real parts if the 

determinants of all associated Hurwitz matrices are positive. This means that a given equilibrium E is locally 

asymptotically stable only when 𝐴 1 > 0,  𝐴 3 > 0,  𝐴 1𝐴 2 > 𝐴 3, and 𝐴 3 >

√𝐴 1(𝐴 1𝐴 4 − 𝐴 2𝐴 3), or equivalently 𝐴 1𝐴 2𝐴 3 > 𝐴 3
2 + 𝐴 1

2𝐴 4. In the present case, we have  1 <

0 𝑎𝑛𝑑 𝐴 3 < 0 . Observing the Jacobian entries 𝑎 1,2<0, 𝑎 2,1>0, 𝑎 2,3<0, 𝑎 3,2>0, 𝑎 3,3<0, and 𝑎 4,4<0 it can be 

concluded that 𝐴 1𝐴 2𝐴 3 > 𝐴 3
2 + 𝐴 1

2𝐴 4 till holds. Therefore, by applying the Routh-Hurwitz conditions, we can 

explicitly state the necessary and sufficient requirements for the positive equilibrium to maintain local asymptotic 

stability. For clarity, the following notation is introduced.  

𝑎 1,1 > 0 𝑖. 𝑒. 𝑖𝑓 𝛼 >
𝑎𝐺 𝑒

(1 + 𝑏 1𝐸 𝑒)
+

𝑎𝐸 𝑒𝐼 𝑒𝑏 1
(1 + 𝑏 1𝐸 𝑒)2

(
𝑘

(1 − 2𝐸 𝑒)
) 𝑎𝑛𝑑 𝑎 1,2 < 0 𝑖. 𝑒. 𝑖𝑓 

−𝑎𝐸𝑒

(1 + 𝑏 1𝐸 𝑒)
< 0 𝑎𝑛𝑑 

𝑎 2,1 > 0 𝑖. 𝑒.  𝑏 1 <
𝐸 𝑒

(1 + 𝑏 1𝐸 𝑒)
 𝑎𝑛𝑑 𝑎 2,3 < 0 𝑖𝑓 𝜁 <

𝐶 𝑒 − 1

𝐶 𝑒
 𝑎𝑛𝑑 𝑎 4,4 < 0. 

Consequently, 𝐸4 is identified as an unstable equilibrium. Trajectories in its neighborhood exhibit spiraling 

motion, whose persistence depends on the real parts of the complex eigenvalues. Here, one complex eigenvalue 

has a positive real part, and the other a negative one, classifying this equilibrium as a “saddle-point focus.” 



Miller et al., Modeling Hospital Patient Flow as an Interconnected Compartmental System: Equilibrium and Stability 

Analysis 

 

 

69 

The analysis identified five distinct equilibria. The full dynamical equilibrium is particularly important because it 

includes all populations with positive values, and it occurs at 𝐸4. This equilibrium reflects the system’s 

‘nowcasting’ capability and demonstrates how variations in bed occupancy across departments propagate 

throughout the system, affecting both upstream and downstream components (‘forecasting’). Upstream refers to 

beds in discharge or mortuary units, while downstream refers to beds in active departments, often called level 3 

beds.  

We studied the equilibria of the system, labeled (𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5), evaluating their viability under biologically 

relevant conditions. To guarantee that the model produces realistic (non-negative) results, all initial conditions are 

specified: 

𝐸(0), 𝐶(0), 𝐺(0), 𝐼(0) 

and parameters: 

𝑟, 𝐾, 𝑎, 𝛽, 𝜁, 𝑚 1, 𝑚 2, 𝑚 2, 𝜔 

as non-negative values, consistent with their real-world meanings. The components appearing in the equations, 

for example: 
𝑎𝐸𝐶

1 + 𝑏 1𝐸
, 

are formulated so that they stay non-negative under these assumptions. In addition, the mortality rates: 

𝑚 1𝐶, 𝑚 2𝐺, 𝑚 3𝐼, 

The terms are scaled according to the population sizes, ensuring that no variable can drop below zero. Analysis 

of the Jacobian eigenvalues shows that the biologically relevant equilibrium 𝐸5 is locally stable. Corresponding 

numerical simulations confirm that every state variable remains non-negative throughout the system’s 

progression. This verifies that the model produces biologically consistent solutions given the chosen parameter 

set. 

Parameter values investigation 

A core objective of modeling population dynamics is to uncover the primary factors controlling system behavior, 

enabling predictions of responses to changes in environmental parameters [20]. In the hospital bed framework 

represented by Eq. (1), parameters in the base analysis correspond to the actual number of daily patient admissions. 

In UK hospitals, high bed occupancy constrains the number of patients admitted over a 24-hour period, as it is 

limited by beds becoming available due to discharges and deaths. 

Patients arriving at the emergency department (ED) are evaluated for severity. Those requiring admission are 

either sent to a general medical ward G or a Covid ward C, based on the median number of transfers from the ED 

to wards, denoted by Γ1 and Γ2. Admissions are targeted to occur within 4 hours (a), the standard ‘time to admit.’ 

Patients whose condition deteriorates in medical wards are escalated to ICU care, with the median number of daily 

ICU transfers over the prior week represented by ζ. 

Daily ward-specific mortality reflects patient case mix, with m1, m2, and m3 representing deaths in the general 

ward, Covid ward, and ICU, respectively. The total bed availability is calculated as the sum of daily discharges 

and deaths (ω). Because of limits on physical beds and staff, the threshold for admissions may be adjusted to 

prevent overcapacity. Eq. (1) describes patient flow from the ED, where steady-state admissions are determined 

by outflows (discharges and deaths) in the absence of Covid. 

The next section provides a definition of the exogenous (independent) parameter values: 

Numerical simulation results 

   Time series and phase portraits 

The purpose of this section is to support the analytical results by using experimental parameter values obtained 

from a clinical consultant with hospital expertise. For the simulations, we employed the 14 parameter values 

provided in Table 2, which are used to explore the model in Eq. (1). These values also guided the selection of 

initial conditions for the numerical experiments. Another important goal here is to verify the analytical outcomes 
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(Table 1) through computational simulations. The results reveal several notable characteristics of the system from 

a practical standpoint. 

Table 2. Descriptions of the parameters and their corresponding units applied in the model presented in Eq. (1). 

Parameter Definition 
Value / 

Range 
Units 

r Daily admission rate (number of new patients arriving in the past 24 hours) 5 dimensionless 

K Hospital carrying capacity (total effective resource/bed capacity) 100 – 200 dimensionless 

a 
Transfer rate from Emergency Department (ED) to inpatient wards under 

low COVID pressure (inverse of average processing time) 
4 hours⁻¹ 

ζ Linear occupancy-to-ICU admission rate coefficient 0.2 dimensionless 

ε 
Model reduction switch parameter (ε = 0 reduces the full model to a special 

case; ε = 1 retains the full four-compartment model) 
0 or 1 dimensionless 

Γ₁,₂ Patient flow (transfer) rates between ED and other hospital departments 4 – 5 hours⁻¹ 

β 
Fixed daily discharge capacity (maximum number of patients that can be 

discharged per day) 
5 dimensionless 

b₁,₂ Average bed occupancy duration (length of stay) in general wards 1.5 – 2 days⁻¹ 

m₁,₂,₃ Mortality rate across compartments 1.5 dimensionless 

ω Patient discharge rate from the hospital (recovery turnover rate) 3.5 dimensionless 

Figure 2 illustrates the local stability of the system near the second equilibrium 𝐸2. In this scenario, both the 

Covid ward and the general medical ward have zero population, and the system reaches a stable state with all 

trajectories converging toward the equilibrium. The oscillatory patterns are driven by the second positive root of 

the quartic polynomial, which governs the stability of the clinically significant equilibrium 𝐸4. For the 24-hour 

simulation, these oscillations capture short-term periodic behavior, whereas in the 500-hour simulation, they 

continue over a much longer timescale, reflecting extended regulatory influences. Similarly, Figure 6 shows 

oscillatory trajectories, highlighting their sensitivity to both the initial conditions and the system’s parameters. 

  

a) b) 

Figure 2. shows the time series and phase portraits near the equilibrium point corresponding to hospital 

resources and the ICU equilibrium 𝐸2, given by (He,We,Ge,Ce)=(100,0,0,233.3333333) with ζ = 0.2 and all 

other parameters fixed as in Table 2. The trajectories clearly converge to a stable limit cycle. 

Figures 4 and 6 present the system’s temporal evolution for the specific case model, with trajectories in HWC 

space under three distinct initial conditions: 

(𝐻𝑒,𝑊𝑒,𝐺𝑒,𝐶𝑒)=(0.2597,1.2983,0,0.49379), (0.15810,1.5440,7.6186,3.0031), and 

(99.9214,0.14818,4.5320,1565.697), using 𝜁=0.2 and all other parameters set to their default values. In Figure 
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4b, the trajectory converges onto a limit cycle with a period of roughly 500 hours, exhibiting substantial 

oscillations in H. These results reveal the system’s inherent instability. 

Prior analyses have mainly examined bed usage within individual departments (micro-level), rather than across 

the entire hospital system (macro-level). Here, we focus on bed utilization between departments within a hospital 

trust, which we term ‘meso-activity.’ Figures 4-6 illustrate hospital activity over 24 hours, showing that nearly 

all departments operate under control with stable patient movement. Extending the simulation to 500 hours 

(approximately 20 days) highlights periodic dynamics, with trajectories forming a limit cycle around the three 

feasible, clinically relevant equilibria. 

In the UK, emergency cases—including Covid patients—typically enter the hospital either after home assessment 

by a clinician (paramedic or occasionally GP) or by presenting at the ED. Triage is then conducted to assess the 

urgency of each patient, following a military-inspired classification: those likely to survive without intervention, 

those likely to die regardless, and those likely to survive only with intervention. 

One-parameter bifurcation behavior 

Numerical simulations of the model in Eq. (1) were used to investigate bifurcation behavior. Figure 7 depicts the 

local stability diagram around 𝐸4 using the parameter values from Table 2. As shown in Figure 7a, if 𝐸4<𝐾, the 

hospital population increases, while 𝐸4>𝐾 signals resource shortages. Since 𝐸4 depends on ζ, the equilibrium is 

highly sensitive to bed numbers. If 𝐸4=𝐾, the hospital population remains stable.  

These simulations illustrate the 𝐸–𝐶–𝐺–𝐼 clinical model. For specific parameters, the patient population can rise 

to very high levels yet eventually stabilize, while emergency population levels remain substantial. In real 

scenarios, stochastic fluctuations in patient admissions and life cycles may further increase population numbers, 

especially due to Covid and other conditions. Similarly, G and C populations can remain high, although chance 

variations in patient turnover may cause temporary decreases. 

Heat map for hospital dynamics 

To explore how variations in medical resources k affect population dynamics, we examined changes in k and ζ 

over 24 hours, presenting the results as a heat map in Figure 7. Cyclic system behavior from Eq. (1) shows that 

patient density rises in response to infection surges, and limited resources can increase mortality rates. Short-term 

dynamics in the general ward remain stable, supporting the assumption that resource constraints directly influence 

patient flow. 

The heat map in Figure 8 also highlights extreme responses in patient populations across wards due to variations 

in k and ζ, and illustrates how altered mortality affects equilibrium. Different levels of viral impact shape the 

stabilization of patient densities in each ward. Equilibria to the left of the curve in Figure 8a are unstable, while 

Figure 8b shows high densities in the E and C wards, indicated in red. Crossing the saddle-node curve produces 

an unstable equilibrium, demonstrating that increased patient flow places additional pressure on hospital resources 

and affects population densities in all wards. 

Materials and Methods  

This study was a cross-sectional study with the aim of comparing sexual satisfaction in women with and without 

Candida infection. The study was performed on 160 pregnant women referred to the specialized gynecology clinic, 

Shahid Beheshti Hospital, Tehran in 2019 in two groups of 80 patients with and without Candida. The inclusion 

criteria were no addiction, no history of neuropsychiatric illness, no medication affecting sexual function, no 

physical illness or surgery affecting sexual function, no severe marital conflict such as the threat of divorce and 

separation, and no pregnancy exclusion criteria. Non-participation were among the exclusion criteria.  

After receiving the code of ethics and obtaining the necessary permits and coordinating with hospital authorities, 

the researcher attended various shifts (morning-evening) at the hospital's specialized clinic. Research units were 

selected by the researcher in terms of inclusion criteria, screening, and eligible individuals. Participants were fully 

informed about the purpose of the study, the confidentiality of the answers, and knowledge of the results of the 

study. After obtaining written informed consent, data collection was done in both groups, and the sampling method 

was random. Pregnant mothers with Candida infection were diagnosed by a specialist midwife with the genital 

examination and clinical symptoms. Unsuspecting pregnant individuals were mothers with none of the clinical 

signs and symptoms of Candida infection, such as itching, burning, etc. The data collection tool was a 
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questionnaire with two sections. The first section included personal information such as education level, 

occupation of the woman, and her spouse, body mass index, housing status, income, and pregnancy status. The 

second part of the questionnaire was the Larson Sexual Satisfaction Questionnaire that consisted of 25 items, 13 

of which (25, 24, 20, 18, 15, 14, 11, 9, 8, 7, 6, 5, 4) were count reversed. The third part of the questionnaire was 

about the effect of antibiotics and corticosteroids on the sexual satisfaction of pregnant women infected with 

Candida. For this purpose, the Larson questionnaire was used to examine the effect of antibiotics and 

corticosteroids on sexual satisfaction in pregnant mothers who had used these drugs for three months. Answering 

questions is a Likert five-point (1 = never to 5 = always). The total score of this instrument is in between 25-125. 

25-50 score of sexual dissatisfaction, 51-75 score of low sexual satisfaction, 76-100 score of moderate sexual 

satisfaction, and 101-125 score of high sexual satisfaction. This questionnaire was used in the study of Bahrami 

et al. (2016), with Cronbach's alpha coefficient of greater than 0.7. Its validity and reliability were determined for 

positive and negative questions, and it was determined that this questionnaire could be used in the Iranian 

population to measure sexual satisfaction. The research units in each group completed the Larsson Personal 

Information, and Sexual Satisfaction Questionnaires separately also the research units completed the 

questionnaires separately for privacy purposes. It took about 15 minutes to complete the questionnaires. After data 

collection, the data were analyzed by SPSS software and independent t-test. Finally, the relationship between the 

two concepts of sexual satisfaction and candidiasis in pregnant women was assessed. 

Ethical considerations 

Ethical considerations included providing information about the study, duration of the study, purpose, and type of 

study, obtaining informed written consent from pregnant mothers, ensuring the confidentiality of information, and 

being free to participate or not participating at any stage of the study. 

 

Statistical analysis 

Data were analyzed by SPSS software using an independent t-test. Frequency, percentage, mean, standard 

deviation, minimum, and maximum were determined using descriptive statistics. Independent t-test was used to 

compare sexual satisfaction scores between the two groups. 

Results and Discussion 

Since the pioneering work of Freedman [21, 22], Holling type II functional response models have been widely 

explored to better understand system dynamics and behaviours. More recent studies, including Freedman [23], 

focus on identifying periodic oscillations and assessing how the functional response shapes these dynamics [24]. 

In this study, we investigate the direction of trajectories by solving the model in Eq. (1). Table 1 summarizes key 

analytical results, while additional numerical outcomes were generated using MATLAB’s 𝑂⁢𝐷⁢𝐸⁢45 solver. 

The system in Eq. (1) presents four hyperbolic equilibria that are clinically relevant and one that is not feasible, 

𝐸3. Equilibrium 𝐸1 corresponds to the extinction of all hospital populations and is consistently stable. Equilibrium 

𝐸2 occurs when the ED is at maximum occupancy, while the Covid ward and general medical ward remain empty, 

and ICU occupancy is limited; this state is also stable. Equilibrium 𝐸3 is not clinically meaningful because it 

produces a negative population for at least one department. The clinically relevant equilibrium 𝐸4 is derived from 

a quartic polynomial with four real roots—two negative and three positive—all of which support surviving 

populations. Each positive root exhibits distinct dynamic behaviour. 

The 𝐸4 equilibrium acts as a saddle-focus, combining stable and unstable components with oscillatory motion. 

Stability is governed by the real eigenvalues, whereas the complex conjugate eigenvalues drive the oscillations. 

Figures 4a and 4b display the general medical ward free equilibrium, while Figures 4c and 4d depict the first 

positive root of the quartic polynomial—clinically relevant 𝐸4—over 24-hour and 500-hour periods, as specified 

in Eq. (13), with all other parameters set according to Table 2. 

The parameters in Table 2 generate a variety of system behaviours even within a narrow range of ζ values. 

Stability patterns can be classified into four types based on population dynamics or limit-cycle behaviour [25]. 

An ‘unstable spiral’ emerges when trajectories diverge from initial conditions, producing unbounded oscillations. 

Our simulations reveal that this oscillatory region persists across the parameter ranges listed in Table 2, consistent 

with results in [22]. 
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The oscillations in the hospital model primarily result from the ICU bed functional response (C), which plays a 

critical role in system dynamics and has clinical significance [22]. Prior work [26] shows that even a simple 

reaction-diffusion model can reproduce complex oscillatory dynamics by focusing on trophic interactions. 

Interestingly, the limit-cycle behaviour observed with linear mortality functions for the Covid ward (W), general 

ward (G), and ICU (C) may disappear if quadratic mortality functions are applied to G and C. Numerical 

simulations using 𝑂⁢𝐷⁢𝐸⁢45 confirm this. Figure 2 presents the time series (Figure 2a) and phase portraits 

(Figure 2b) near the ICU and hospital resource equilibrium 𝐸2, with ζ = 0.2 and all other parameters fixed as in 

Table 2, showing convergence onto a stable limit cycle. Figure 3 illustrates the system near the general ward free 

equilibrium 𝐸3, with the same parameters, where trajectories converge to an unstable limit cycle, displaying 

oscillatory behaviour as shown in Figures 3a and 3b. 

  

a) b) 

Figure 3. shows the system’s trajectories near the general ward free equilibrium 𝐸3, defined by 

(He,We,Ge,Ce)=(0.02597402597,1.298363974,0,0.4934840052) with ζ = 0.2, while keeping all other 

parameters as listed in Table 2. In this configuration, the system evolves toward an unstable limit cycle, with 

clear oscillatory fluctuations observable in the time series and phase portraits. 

The dynamics become more pronounced in Figures 4a–4d, where the clinically relevant equilibrium shows 

instability when ζ = 2.3. Similarly, Figures 5a–5d illustrate the behaviour associated with the second positive root 

of the quartic polynomial, corresponding to equilibrium 𝐸4 over both 24-hour and 500-hour periods. Figure 6 

confirms analogous patterns, demonstrating persistent oscillatory dynamics and highlighting the unstable nature 

of this clinically significant state. 

  

a) b) 
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c) d) 

Figure 4. presents the evolution of the system for the general medical ward free equilibrium. The time series 

and phase-space paths in panels 4(a) and 4(b) correspond to the chosen initial conditions for this equilibrium. 

Panels 4(c) and 4(d) display the behaviour associated with the first positive root of the quartic polynomial, 

representing the clinically significant equilibrium 𝐸4, over 24-hour and 500-hour simulations as specified in 

Eq. (13). All other parameters remain fixed according to the values in Table 2. 

 

 
 

a) b) 

  

c) d) 

Figure 5. Time series and phase-space trajectories near the proposed initial condition for the second positive 

root of the quartic polynomial, corresponding to the clinically relevant equilibrium E4, for durations of 24 

hours and 500 hours. This equilibrium is defined in Eq. (13), with all other parameters maintained as 

specified in Table 2. 
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a) b) 

 
 

c) d) 

Figure 6. Time series and phase-space trajectories near the proposed initial condition for the third positive 

root of the quartic polynomial, representing the clinically relevant equilibrium E4 over 24-hour and 500-hour 

intervals. Eq. (13) defines this equilibrium, and all other parameters remain as in Table 2. 

The model described by Eq. (1) shows an unstable region in the vicinity of Hopf bifurcations for the parameter 

set 𝐾=20, 𝑟=4.455, 𝜁=2.3, and 𝜔=1.5. Nevertheless, it does not reproduce dynamics consistent with the 

enrichment paradox. Increasing the hospital's core resources 𝐾 drives the system through unstable states; however, 

larger populations in both 𝑊 and 𝐶 maintain instability at higher 𝐾 values. This behavior provides detailed insight 

into the interplay among the three hospital departments. 

Conclusion 

The main objective of this work is to deepen the understanding of hospital dynamics as described by Eq. (1). The 

study confirms the presence of periodic oscillations in the system and assesses how viral dynamics influence 

hospital operation. It emphasizes the importance of comprehending COVID-19 transmission effects within 

hospital ward structures. Trajectories were analyzed by solving Eq. (1), and Table 1 summarizes the numerical 

outcomes obtained using MATLAB’s ODE45 solver. The model identifies four hyperbolic, clinically feasible 

equilibria along with a single non-viable equilibrium, 𝐸3. The first equilibrium, 𝐸1, represents complete 

population extinction (empty hospital) and is always unstable. This analysis aims to enhance understanding of 

hospital dynamics during the COVID-19 pandemic under limited bed capacity conditions. Equilibrium 𝐸2 occurs 

when patients in 𝐸 are maximized while 𝐶 and 𝐺 populations vanish, constraining COVID-19 spread, which 

renders it unstable (Section 4). Equilibrium 𝐸3 corresponds to persistent patient presence and virus spread despite 

depletion of hospital resources. The fourth equilibrium, 𝐸4, reflects coexistence where all ward populations are 

present, as detailed in Section 3. 

Parameter choices from Table 2 allow observation of diverse behaviors within a narrow 𝜁 range. System stability 

can be categorized into four classes based on 𝐸−𝐶−𝐺−𝐼 population dynamics or limit-cycle behavior [25]. An 

unstable spiral emerges from the initial conditions, producing unbounded population oscillations. This oscillatory 
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region is demonstrated in the four-species model and persists under the parameter set in Table 2. Oscillations in 

the 𝐸−𝐶−𝐺−𝐼 model highlight the challenges of using Holling type II functional responses in clinical settings, as 

they capture realistic saturation effects: patient transfer rates slow as ward capacity is approached. If quadratic 

mortality functions replace linear ones, observed limit-cycle behavior may not occur [24]. 

Numerical results in Figure 7, computed via ODE45 for various equilibria, show that the coexistence equilibrium 

becomes unstable when 𝜁=0.001. Here, a neutral center manifests as a closed loop with undamped oscillations. A 

stable spiral slowly converges to equilibrium, with population oscillations gradually decreasing until stability is 

reached. These findings will be validated using actual hospital patient flow data. 

  

a) b) 

  

c) d) 

Figure 7. Clinically significant equilibrium with respect to ζ, considered as the hospital bed capacity 

parameter. 

 

  

a) b) 
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c) d) 

Figure 8. Heat map illustrating hospital dynamics and stability over a 24-hour period, showing the system’s 

maximum equilibrium (Ee,Ce,Ge,Ie) for varying values of K and ζ. Figure 8a displays the heat map for the 

emergency department EEE, highlighting sustained high population levels, indicated by the red coloration. 

Figure 8d depicts the ICU, where the population remains low due to limited bed availability. 
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