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ABSTRACT 

The pursuit of next-generation non-steroidal anti-inflammatory drugs (NSAIDs) remains a critical focus in 

pharmaceutical research, given that over a billion individuals experience pain and inflammation. A key strategy 

in this effort involves developing a quantitative correlation between the anti-inflammatory potential and the 

molecular descriptors of cyclooxygenase-2 (COX-2) inhibitors, which will facilitate the identification and 

advancement of novel NSAIDs that minimize adverse effects associated with COX-1 inhibition. In this study, the 

random forest (RF) algorithm was used to construct a highly predictive quantitative model to assess the inhibitory 

activity of various compounds targeting COX-2. The resulting model demonstrated an outstanding classification 

accuracy of 93% with an AUC of 0.98. When applied to external datasets, it identified 759 newly designed COX-

2 inhibitor derivatives and 188 structurally related compounds as active, with 19 emerging as strong candidates 

for COX-2-targeted anti-inflammatory agents. Among these compounds, the top two compounds showed the 

highest probability of activity and exhibited superior binding affinity to COX-2 compared to existing selective 

inhibitors. Furthermore, the RF model proved to be conservative in predicting active compounds, reducing the 

risk of late-stage failures in drug discovery and increasing the efficiency of the development process. 
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Introduction 

Inflammation is a major health concern worldwide, affecting over 1.5 billion people [1]. It manifests as pain, 

redness, swelling, heat, and functional impairment [2]. This biological response is linked to the development of 

chronic conditions such as cardiovascular disease, diabetes, autoimmune disorders, cancer, and respiratory 

illnesses [3-6], all of which significantly impact patients' well-being [7, 8]. 

A key mechanism of inflammation involves arachidonic acid metabolism, regulated by cyclooxygenase (COX) 

enzymes, particularly COX-1 and COX-2 [9-12]. Although these enzymes share structural similarities, a key 

distinction exists at position 523, where COX-1 contains isoleucine, whereas COX-2 has valine [13]. The bulkier 

isoleucine in COX-1 restricts access to its active site, whereas COX-2, due to its valine substitution, allows the 

binding of larger molecules. 

COX-1 is constitutively expressed [14] and plays an essential role in physiological functions, such as maintaining 

gastric mucosal integrity by promoting protective prostaglandins [15, 16]. Inhibition of COX-1 can therefore lead 

to gastrointestinal complications, including ulceration. On the other hand, COX-2 is an inducible enzyme [14] 

predominantly upregulated in inflamed tissues. Targeting COX-2 selectively can reduce gastrointestinal risks 

associated with traditional COX-1 inhibition [17]. 
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Conventional NSAIDs inhibit both COX-1 and COX-2, whereas selective COX-2 inhibitors, such as coxibs, were 

developed to minimize adverse effects [18-20]. However, current anti-inflammatory drugs still present challenges 

due to their side effects, necessitating the ongoing search for safer therapeutic alternatives [21, 22]. 

One approach in drug discovery involves identifying new bioactive compounds based on the structural properties 

of known inhibitors. A key technique in this process is machine learning, with random forest (RF) being a widely 

used classification method [23]. This algorithm constructs multiple decision trees to categorize compounds as 

active or inactive, making it valuable for analyzing biological [24, 25] and medical [26, 27] datasets. In this study, 

RF modeling was applied to two external datasets: one consisting of newly designed compounds (derivatives) and 

another containing structurally similar molecules (similars) with potential COX-2 inhibitory activity. 

Materials and Methods  

To gather experimental data on COX-2 inhibition, literature searches spanning 1997 to 2019 were conducted using 

keywords related to COX inhibition. Compounds were classified based on IC50 values, with active compounds 

defined as those having IC50 ≤ 10 μM, while those with IC50 > 10 μM were considered inactive. 

Molecular structure preparation and computational analyses were performed on a Windows 7 Professional 64-bit 

system with an Intel® Core™ i7-4770K processor (3.50 GHz) and 8 GB RAM, along with a macOS Catalina 

machine featuring a 3.1-GHz Dual-Core Intel Core i7 processor and 16 GB RAM. Chemical structures were drawn 

using ChemDraw Professional 16.0 (www.perkinelmerinformatics.com) and saved in .sdf format. The transition 

from 2D to 3D structures was executed in Discovery Studio (DS) 4.0 (Biovia, Inc.), utilizing the Dreiding force 

field for structural optimization [28]. Molecular descriptors were calculated using Spartan 16 

(www.wavefun.com) and DS 4.0. 

Machine learning analysis was conducted with RapidMiner Studio 9.7.001 (www.rapidminer.com). The dataset 

was split, with 20% (276 compounds) reserved for testing and the remainder for model training. A 2-fold 

validation method was implemented, where 80% of the training set was used to build the model, and 20% for 

hyperparameter tuning. The optimized RF model was then trained on the full training dataset (1,104 compounds). 

Model performance was assessed using accuracy, sensitivity, specificity, and area under the curve (AUC). 

The validated RF model was subsequently applied to external datasets: (1) derivatives, which included novel 

compounds derived from the most abundant chemical families, and (2) similar, identified from the ChEMBL and 

ZINC databases through similarity searches using SwissSimilarity (www.swisssimilarity.ch), with the most active 

inhibitors serving as reference structures. Molecular properties were calculated before classification using the RF 

model. 

Predicted active compounds underwent in silico ADMET analysis using DS modules ADMET and TOPKAT. 

Drug-likeness was assessed through a quantitative estimate of drug-likeness (QED) scores, while synthetic 

accessibility (SA) was evaluated via SwissADME (http://www.swissadme.ch). 

Molecular geometry optimization of the most promising candidates was performed using PM3 semi-empirical 

methods, with equilibrium conformers serving as starting structures. The refined structures were saved as pdb 

files. Furthermore, a 100-ns molecular dynamics simulation [29] was performed on the COX-2 target protein 

(PDB ID: 5IKR), followed by molecular docking studies using AutoDock Vina [30] in PyRx 

(www.pyrx.sourceforge.io). 

Results and Discussion 

The selection of journal articles for the compound collection was primarily based on the methodological 

consistency in measuring experimental COX-2 activity [14]. A total of 66 reports from six leading scientific 

journals contributed to the dataset, as detailed in Table 1 [31]. From these sources, 59 distinct chemical families 

were identified, comprising 1,380 compounds in total. Among them, 929 (67%) demonstrated COX-2 activity, 

while the remaining 451 (33%) were classified as inactive. 

For each compound, over 400 molecular descriptors were computed. The Discovery Studio suite generated 397 

descriptors, including 333 based on 2D properties and 64 derived from 3D structural features. Additionally, 

Spartan 16 provided 28 descriptors, distributed across molecular (9), QSAR (14), and thermodynamic (5) 

categories. To refine the dataset, descriptors with a high frequency of missing values (NaN) or minimal variability 

were eliminated, reducing the total number of variables to 184. 

http://www.pyrx.sourceforge.io/
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Table 1. Compounds by family and by experimental COX-2 inhibitory activity, from literature, published 1997-

2019 

No. Family Actives Inactive Total 

1 1,2-Diarylpyrroles 23 17 40 

2 1,2-Diarylimidazoles 82 13 95 

3 1,2-Arylhetero-arylimidazoles 37 11 48 

4 1,2-Diarylcyclopentenes 44* 4 48 

5 Terphenyls 42 7 49 

6 1,5-Diarylpyrazoles 77 31 108 

7 Diarylspiro[2.4]alkenes 33 1 34 

8 4,5-Diarylisoxazoles 3 0 3 

9 Pyrazoles 12 0 12 

10 Pyrazolopyrimidine 18 0 18 

11 Celecoxib-Tolmetin hybrids 11 0 11 

12 Pyrazole Derivatives 11 9 20 

13 Tetrazoles 4 17 21 

14 Cyclic imides 16 45 61 

15 Dihydropyrazoles 20 7 27 

16 Pyrazole-Thiadiazole hybrids 12 6 18 

17 Hydrazones, Pyrazoles 11 8 19 

18 Pyrazoles, Salicylamides, Pyrazolo[1,2-a]pyridazines 6 5 11 

19 Indoles 5 5 10 

20 Benzoxazole benzamides 27 3 30 

21 Pyrazolones 11 0 11 

22 Triarylpyrazolines 16 0 16 

23 Quinoline-2-carboxamides 14 0 14 

24 Naproxene derivatives 14 0 14 

25 Chalcones 12 0 12 

26 Indoles, standards 5 1 6 

27 Isoindolines 12 0 12 

28 Pyrazolo[3,4-b]pyridines 24 0 24 

29 Indole-3-glyoxamides 21 0 21 

30 Dihydro-pyrazolyl-thiazolinones 15 5 20 

31 1,5-diarylpyrazole-Chrysin hybrids 30 0 30 

32 2-Imidazolines 15 15 30 

33 Tetrahydropyrans 2 5 7 

34 Benzenesulfonamides, Benzisothiazolones 14 0 14 

35 Pyrazoles 0 8 8 

36 Phenylazobenzenes 3 9 12 

37 Alkyldiaryl (E)-olefins 4 1 5 

38 Mercaptobenzothiazole-oxadiazole hybrids 9 12 21 

39 Carboximidamides, Aryloxadiazoles 12 0 12 

40 Triazine-4-aminophenyl-morpholine-3-ones 14 8 22 

41 Diarylketones, Diarylamines 8 8 16 

42 Diarylthiazoles, Diarylimidazoles 6 10 16 

43 Carprofen derivatives 1 32 33 

44 Benzamides 0 27 27 

45 Pyran-2-ones 36 20 56 
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46 Tetrahydropyrans 18 0 18 

47 Chrysin-Indole hybrids 10 0 10 

48 Urea-Pyrazole hybrids 13 7 20 

49 Nimesulides 15 11 26 

50 Phenoxyphenyl pyrrolidines 1 25 26 

51 Coxib analogues 6 0 6 

52 Isoxasolines 8 2 10 

53 Methyl oxazoles 8 3 11 

54 Ethanesulfohydroxamic acid esters 3 2 5 

55 Benzylidenes 11 11 22 

56 Thiadiazoles, Oxadiazoles 14 24 38 

57 Diazenium diolates 0 6 6 

58 Indomethacin derivatives 14 1 15 

59 Propynones 16 9 25 

 Total 929 451 1380 

*2 are standards; not cyclopentenes 

 

A sequence of trials utilizing 80% of the training dataset, followed by validation on the remaining 20%, revealed 

that the random forest model attained its highest levels of specificity, accuracy, and sensitivity when the 

correlation threshold was set at r = 0.75, as illustrated in Figure 1. As a result, only variables with correlation 

coefficients of 0.75 or lower were incorporated into the model, refining the initial 184 descriptors down to 64. 

The significance of these selected descriptors is depicted in Figure 2, arranged in descending order of their 

influence. Some of the most critical descriptors included molecular weight (wt1), shadow_z-length (sz), which 

represents molecular shadow extension along the z-axis, the frontier molecular orbitals eho and elu (EHOMO, 

ELUMO), AM1 energy (am1), polar surface area (psa), and dipole moment (dip). 

Figure 3 identifies information gain [32] as the most effective criterion for determining node splits during tree 

formation. The model achieved its optimal classification performance at a tree depth of 14, where classification 

errors were minimized. 

In decision tree methodologies, node-splitting criteria such as information gain, gain ratio, and Gini index are used 

to determine the most suitable variable for dividing a node. Information gain measures the reduction in entropy, 

which signifies the level of impurity within nodes, with lower entropy values indicating nodes that are more 

homogeneous and thus enhance classification accuracy [33]. 

 

 

Figure 1. The random forest model specificity, sensitivity, and accuracy as determined by the maximum 

correlation coefficient (r) allowed among the independent variables, using ntree = 100 and maximal depth = 

15, with information gain as the splitting criterion. 
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Figure 2. The descriptors in the random forest model by their importance in generating the compound class 

prediction. 

 

 

Figure 3. The classification error (%) for the different splitting criteria (information gain, gain ratio, and Gini 

index) is determined by the maximal depth. 

 

Using the Gini index [34] as the splitting criterion, the classification error reached its lowest point at a tree depth 

of 17, which extended the branching structure by three levels compared to information gain. The Gini index 

evaluates the degree of value distribution within a node, where smaller values indicate reduced entropy, resulting 

in purer nodes. On the other hand, when the Gain ratio was applied [35], classification error continued to fluctuate 

even at a depth of 20, preventing stabilization. 

Based on these model refinement analyses, the final model was trained on the complete 80% training dataset, 

incorporating descriptors that met the condition r ≤ 0.75. Information Gain was employed as the node-splitting 

criterion, with the tree depth capped at 14 across all 100 decision trees within the random forest ensemble. 

Encouragingly, the model demonstrated exceptional predictive accuracy, attaining an overall performance of 93%. 

It successfully identified 182 out of 186 active compounds (98% sensitivity) and correctly classified 75 out of 90 

inactive compounds (83% specificity), as depicted in Figure 4. 

An additional performance evaluation metric, the area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve, provides insight into classification effectiveness. A perfectly functioning model 

achieves an AUC of 1. As illustrated in Figure 5, the AUC-ROC for the random forest model reached 0.98, 

signifying near-perfect discrimination between active and inactive compounds. 
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Furthermore, a set of compounds labeled as derivatives was systematically designed by introducing modifications 

to the most active molecule within each of the five selected COX-2 inhibitor classes. This led to the virtual creation 

of 1,100 compounds derived from the core structural frameworks of cyclopentenes, imidazolyls, 

difluorobenzenes, furanyl/thiophenyls, and isoxazoles. Additionally, another set, termed similars, consisted of 600 

compounds sourced from the ChEMBL bioactive and ZINC drug-like databases using the SwissSimilarity 

platform. The similarity search queries were based on the most active representative compound from each known 

COX-2 inhibitor family. 

 

 

Figure 4. The random forest model class prediction of the test set of compounds. 

 

 

Figure 5. The random forest model receiver operator characteristic (ROC) plot. 

 

When the RF model was applied to the set of derivatives, 69% (759 out of 1100) of the compounds were predicted 

to exhibit COX-2 activity. Among these, cyclopentene derivatives (compounds 1–300) showed the highest 

activity, whereas difluorobenzenes (compounds 501–700) were predominantly inactive. It’s worth noting that the 

RF model tends to predict a higher rate of inactivity compared to the multiple logistic regression (MLogR) model 

[31], which could be advantageous in the early stages of drug discovery by allowing for the exclusion of 

compounds that are likely to be inactive. 
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For the Similars, the RF model predicted 31% (188 out of 600) to be active against COX-2. The average similarity 

score of these active compounds was 0.38, indicating considerable structural differences from the query structures 

used in the search. This accounts for the relatively small number of active compounds in the similar group. 

These compounds present the potential for developing new scaffolds for COX-2 selective NSAIDs, and the large 

proportion of inactive similars helps reduce attrition rates and lower the overall cost of drug discovery. 

Further in silico analysis of the predicted active compounds was conducted to assess their drug-likeness and 

synthetic accessibility. Over 93% of the active derivatives scored above 0.5 on the quantitative estimate of drug-

likeness (QED) scale [36], indicating they are likely to be drug-like. Their average synthetic accessibility (SA) 

score was 3.3, within the acceptable range of 1–6 [37], and they showed low to optimal solubility and moderate 

to good intestinal absorption. Most were non-mutagenic and non-carcinogenic (89%), although all were 

hepatotoxic. Likewise, the active similars also had a wide range of synthetic accessibility scores (2.1 to 5.6) and 

55% were considered drug-like. These compounds also exhibited favorable characteristics such as non-

mutagenicity (84%) and non-carcinogenicity (81%), although only 23% showed good intestinal absorption. 

The top hits from these groups were selected based on specific criteria, including a PA greater than 0.7, QED 

above 0.5, and other parameters such as acceptable synthetic accessibility (SAS), solubility (AS), and non-

toxicity. Only 13 Derivatives and 6 Similars met these stringent requirements, as shown in Figure 6. 

 

 
Figure 6. The molecular structures of the top hit from the derivatives and similar. 

 

Among the top thirteen derivatives identified, 10 compounds were also highlighted in related MLogR studies [31]. 

These compounds mainly belong to the cyclopentane derivatives category, but the two highest-ranking hits, D256 

and D251, are diarylspiroheptenes. Other prominent compounds on the list include D84, D61, and D87, all 

derivatives of cyclopentenes. In contrast, the top hits from the Similars group are distinct and differ from those 

found in MLogR studies [31]. 

The selection criteria for these hits significantly reduced the false positive rate by focusing only on compounds 

with a high probability of activity (PA > 0.7). Additionally, selecting compounds with QED scores above 0.5 

further ensured they were closer to drug-like characteristics [36]. These compounds were deemed easy to 

synthesize, with an SAS range of 2-4, and showed favorable properties such as good solubility, efficient intestinal 

absorption, and no evidence of carcinogenic or mutagenic effects. They are also suitable for use with other drugs 

due to their non-inhibition of CYP2D6. Molecular docking studies demonstrated promising results as well, with 

all the top 13 derivatives and one of the similar (S202) showing stronger binding energies than etoricoxib (BE = 
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–7.8 kcal/mol), a recognized COX-2 selective drug, and comparable to or exceeding the binding energy of 

mefenamic acid (BE = –8.6 kcal/mol) [38]. 

D256 and D251, the top two hits, exhibit the strongest binding to COX-2 among the identified compounds, which 

increases their potential for progressing to later stages of drug development. 

Conclusion 

Random forest (RF) modeling was employed on a dataset comprising 1380 compounds with known COX-2 

activity, alongside 184 molecular descriptors. The RF model achieved excellent predictive performance with 93% 

accuracy, 98% sensitivity, 83% specificity, and an AUC of 0.98. 

The model was applied to two sets of compounds with no previous COX-2 activity: the derivatives, designed by 

modifying the most active compound from five major COX-2 inhibitor families, and the similar, which were 

selected from ChEMBL and ZINC databases via the SwissSimilarity platform. The RF model identified 759 

Derivatives and 188 Similars as active against COX-2. 

The identified top compounds, including thirteen derivatives and six similars, demonstrated favorable drug-

likeness properties, manageable toxicity profiles, and ease of synthesis. These 19 compounds represent strong 

candidates for further drug development as COX-2 inhibitors. Moreover, these compounds showed binding 

affinities comparable to or even stronger than the reference drugs. D256 and D251 were the top two compounds 

with the highest probability of being active and exhibited the most potent binding to COX-2. The conservative 

nature of the RF model in classifying compounds as active minimizes the risk of costly failures in the later stages 

of the drug discovery process. 
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