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ABSTRACT 

Acute myeloid leukemia (AML) remains a major therapeutic hurdle, especially in patients with FLT3 tyrosine 

kinase mutations. The goal of this work was to create a reliable and accessible machine learning-driven 

quantitative structure–activity relationship (QSAR) model capable of forecasting the inhibitory activity (expressed 

as pIC50) of FLT3 inhibitors, overcoming the shortcomings of earlier models related to limited dataset scale, 

chemical diversity, and forecasting precision. A substantially expanded dataset—approximately 14-fold larger 

than those used in previous investigations (comprising 1350 molecules and 1269 descriptors)—was utilized to 

train a random forest regression model, selected for its outstanding performance and robustness against overfitting. 

Thorough internal assessment through leave-one-out and 10-fold cross-validation produced Q² values of 0.926 

and 0.922, respectively. External testing on a separate set of 270 compounds achieved an R² of 0.941 with a 

standard error of 0.237.Critical molecular features governing inhibitory strength were pinpointed, enhancing 

understanding of the essential structural elements. Furthermore, an intuitive computational platform was built to 

allow quick estimation of pIC50 values and support ligand-based virtual screening, which successfully highlighted 

several potential FLT3 inhibitors. This study marks a notable progress in FLT3 inhibitor research by providing a 

dependable, practical, and streamlined method for initial drug discovery phases, with the potential to expedite the 

development of precision treatments for AML. 
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Introduction 

Acute myeloid leukemia (AML) poses a major obstacle in cancer treatment, marked by the rapid and uncontrolled 

growth of abnormal clonal cells in the blood-forming system, resulting in widespread tissue invasion and 

advancing illness. Central to AML's underlying mechanisms is the Fms-like tyrosine kinase 3 (FLT3) receptor 

gene [1]. Mutations in this gene, especially internal tandem duplications (ITDs), provide leukemic cells with a 

strong growth edge by triggering various signaling cascades essential for disease advancement and patient 

prognosis. As a result, FLT3 mutations play a critical role in the aggressive behavior of AML and have been 

thoroughly investigated for their contributions to pathogenesis and clinical outcomes [2-4]. 

For many years, standard AML therapy has centered on a classic protocol involving prolonged cytarabine infusion 

paired with anthracyclines [5]. The success of this established regimen depends on elements like the leukemia's 

genetic makeup and patient age, where elderly individuals frequently show considerably reduced response rates. 

This has highlighted the pressing demand for innovative treatment options that can boost results across diverse 

patient populations [3]. Accordingly, AML management has progressed with the approval of targeted FLT3 

inhibitors including midostaurin, gilteritinib, sorafenib, and quizartinib. This move toward precision medicine, 

incorporating newer regimens such as CPX-351 and gemtuzumab ozogamicin, demonstrates continuous attempts 

to tailor therapies to the disease's molecular profile [6]. The emergence of these targeted agents and the broadening 
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of therapeutic options represent a meaningful advance in delivering more personalized and effective AML care, 

raising prospects for better survival in varied patient cohorts [7-9]. 

Progress in comprehending and designing FLT3 inhibitors has been substantially aided by quantitative structure–

activity relationship (QSAR) studies and molecular docking techniques [10-16]. Sandoval et al. [16] illustrated 

the application of QSAR through linear discriminant analysis and multilinear regression to precisely forecast the 

antileukemic potential of various compounds. In a similar vein, Shih and Bhujbal et al. [11, 13] combined 

molecular docking with 3D-QSAR methods to pinpoint vital structural attributes and propose new molecules with 

superior FLT3 inhibition. Ghosh et al. [15] showcased the value of computational tools, such as molecular 

dynamics simulations paired with 3D-QSAR, in clarifying structure–activity correlations for FLT3 inhibitors. 

These strategies, supported by work from Fernandes and Islam et al. [14, 17], have yielded essential knowledge 

about molecular binding interactions and affinities of candidate FLT3 inhibitors, reinforcing the importance of 

such computational methods in AML drug research and design. 

More recently, machine learning (ML) has emerged as a powerful tool in classifying AML subtypes, 

demonstrating versatile uses and impressive diagnostic precision. Liu et al. [18] built a random forest classifier 

for automatically distinguishing AML-M1 and M2 subtypes from bone marrow smear images, attaining 99.8% 

accuracy. Abhishek et al. [19] employed deep learning for AML classification among other leukemias, securing 

97% accuracy in binary classification and 95% in multiclass scenarios. Monaghan et al. [20] used ML on flow 

cytometry datasets, reaching 94.2% accuracy in separating acute leukemias from non-malignant cytopenias. 

Awada et al. [21] incorporated genomic information via Bayesian latent class models to uncover new AML 

molecular subgroups, with 97% accuracy in cross-validation. Dese et al. [22] applied support vector machines for 

effective image segmentation and leukemia identification, delivering 97.69% accuracy and cutting diagnostic time 

from 30 minutes to less than one minute. Talaat et al. [23] refined convolutional neural networks (CNNs) through 

hyperparameter tuning for leukemia detection, achieving 99.99% accuracy. Collectively, these efforts highlight 

ML's disruptive impact on AML diagnosis, augmenting conventional techniques and enabling more streamlined 

clinical processes. 

Extending these developments, ML has transformed drug discovery, especially in detecting and forecasting kinase 

inhibitors, including FLT3-targeted ones. Nasimian et al. [24] showed how an ML-driven framework could 

forecast drug responses, uncovering important details about AXL reliance in AML. Janssen et al. [25] presented 

the Drug Discovery Maps (DDM) framework, utilizing algorithms like t-SNE for visualizing and anticipating 

kinase interactions, which facilitated the identification of highly effective FLT3 inhibitors. Zhao et al. [26] 

implemented ML techniques to categorize and examine structure–activity patterns across a large collection of 

FLT3 inhibitors, revealing essential structural elements linked to potent inhibition. As reviewed by Eckardt et al. 

[27], these innovations emphasize ML's increasing role in AML management, spanning diagnostics to treatment 

refinement. Such ML-integrated strategies hold great promise for improving the accuracy and efficiency of FLT3 

inhibitor design, marking a fundamental change in AML therapeutic approaches. 

Although considerable progress has been made in FLT3 inhibitor research, lingering issues remain, particularly 

regarding the forecasting reliability of existing QSAR models. These often display restricted accuracy and 

highlight the demand for greater precision alongside ease of use. A frequent drawback is their dependence on 

constrained molecular datasets during training, which restricts broad applicability across diverse chemical 

structures. Insufficient variety and uniformity in training data impair their effectiveness in addressing the full 

spectrum of possible FLT3 inhibitors. Moreover, the scarcity of accessible, intuitive tools that deliver fast and 

dependable predictions underscores the requirement for more applicable and robust solutions in drug 

development. 

To address these gaps, the present study presents a novel ML-enhanced QSAR model developed using a larger 

and more varied compound collection, promoting improved stability and wider extrapolation. By combining 

cutting-edge machine learning algorithms with detailed molecular descriptors, this model seeks to overcome the 

shortcomings of prior QSAR efforts. It is also engineered for straightforward use, providing swift and consistent 

results. This framework is poised to advance the discovery of novel FLT3 inhibitors for AML therapy, establishing 

a benchmark for more effective and approachable tools in pharmaceutical research. In the long term, it could 

reshape FLT3 inhibitor creation and hasten advancements in tailored AML therapies. 

Materials and Methods  
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Data curation 

Information on compounds inhibiting FLT3, along with their reported IC50 data, was collected from the PubChem 

repository [28, 29] via the Requests package [30] and arranged in a structured table using Pandas [31] within 

Python 3. The compiled dataset was thoroughly refined by eliminating redundant records. Emphasis was placed 

on selecting compounds exhibiting IC50 below 10 µM to emphasize those with greater potency. 

During the final preparation phase, feature standardization was applied to normalize the scales of input variables, 

optimizing suitability for the ANN methods. This procedure was vital for preserving dataset quality and 

compatibility with ANN-K and ANN-P, given their susceptibility to variations in input scaling. Standardization 

was achieved using the StandardScaler from scikit-learn [32], which centers features around zero mean and unit 

variance. The fit_transform operation was used on training samples to derive mean and standard deviation values, 

which were subsequently applied to the test samples via transform, preventing any leakage of test information 

into the model and upholding rigorous statistical standards. 

 

Molecular descriptor calculation 

An initial set of 1511 numeric molecular descriptors was generated employing PaDEL-Descriptor version 2.21 

[33] alongside RDKit [34]. Subsequent refinement removed descriptors that were inapplicable to the full set of 

compounds or exhibited no variation, yielding a final count of 1269 descriptors. This filtering step was critical to 

guarantee uniform descriptor availability across all molecules, preserving only those relevant to the structural 

variety and appropriate for robust machine learning applications. 

 

Benchmarking machine learning methods with external validation 

The assembled dataset, including 1350 molecules and 1269 descriptors, was loaded in Python 3 with assistance 

from Pandas [31]. Target values were derived from experimental pIC50 measurements. For equitable distribution, 

the data was divided into training and testing portions in an 80:20 proportion via the train_test_split utility in 

sklearn [32], fixing random_state at 11 to ensure repeatability. 

The evaluated machine learning approaches, executed through sklearn [32], encompassed random forest 

regression (RFR) [35], gradient boosting regression (GBR) [36], support vector regression (SVM) [37], kernel 

ridge regression (KRR) [37], Gaussian process regression (GPR) [38], and bagging regression with random forests 

(BRF) [39]. In addition, artificial neural network frameworks were constructed using Keras 2.13.1 (ANN-K) [40] 

and replicated in PyTorch 2.4.0 (ANN-P) [41]. Random state parameters were uniformly applied where relevant. 

Default settings were retained for the conventional machine learning algorithms, whereas the ANN underwent 

targeted hyperparameter tuning for best results. 

 

ANN architecture 

The neural network was structured as a sequential setup with three dense layers: an initial layer of 500 units to 

accommodate the extensive feature set, a hidden layer of 5 units for feature abstraction, and an output layer with 

one unit for pIC50 regression. ReLU activation was applied to the first and second layers, while linear activation 

served the output; HeNormal initialization was used for weights. Input normalization relied on StandardScaler 

from sklearn, with training conducted using a batch size of 10 across 100 epochs to promote effective learning 

while mitigating overfitting risks. 

Hyperparameter selections for the ANN prioritized practicality and resource efficiency to enable equitable 

benchmarking against other techniques. The tuned ranges covered layer1_sizes = [100, 300, 500], layer2_sizes = 

[1, 3, 5, 10, 15], epochs_list = [20, 50, 100, 120, 150], and batch_sizes = [5, 10, 20, 40]. These choices balanced 

network depth with computational demands, supporting efficient handling of large-scale QSAR data.  

 

Assessment of model performance and external validation 

The effectiveness of the models was gauged through several statistical measures, including the coefficient of 

determination (R²), mean absolute error (MAE), standard deviation (SD), and root mean squared error (RMSE), 

applied to both training and testing sets. These calculations were performed leveraging functions from the 

sklearn.metrics package, providing dependable evaluation capabilities. The test sets were particularly employed 

for external validation purposes, offering an in-depth perspective on predictive reliability and error profiles across 

the various models, with reproducibility prioritized throughout the process. This was ensured by applying fixed 
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random seeds (value of 11) uniformly to numpy, TensorFlow-Keras, PyTorch, and sklearn components, 

guaranteeing consistent and dependable performance evaluations. 

 

Refinement of model components via feature selection 

Evaluation of individual descriptors 

To determine the impact of each molecular descriptor on forecasting FLT3 inhibitor potency, assessments were 

carried out under the same conditions (80:20 train-test division, random state = 11). Individual descriptors were 

tested using the random forest regressor (RFR), previously determined as the top-performing approach from 

benchmarking. The focus was on the test set coefficient of determination (R² test), which served as a key indicator 

of descriptor significance by directly associating it with improvements in predictive precision. 

 

Descriptor analysis and selection procedure 

Subsequently, the leading 100 descriptors were scrutinized based on their R² test values to explore their 

associations with FLT3 inhibitory potency. This examination guided a gradual incorporation strategy, beginning 

with the highest-ranked descriptor and sequentially including those with lower rankings. The objective was to 

identify the ideal combination that optimized predictive performance while controlling model complexity. 

 

Internal validation procedures 

Following the initial benchmarking and feature refinement stages, the chosen optimal model was subjected to 

internal validation employing leave-one-out and 10-fold cross-validation methods. The leave-one-out approach, 

executed through the LeaveOneOut function in sklearn.model_selection, trains the model on all but one sample, 

using the excluded point for validation, repeating this for every instance. Alternatively, 10-fold cross-validation, 

via the KFold function from the same library, partitions the data into 10 groups, training on nine and validating 

on the held-out one, cycling through all partitions. 

In these validation steps, model reliability was measured primarily with the R² statistic (denoted Q²_LOO for 

leave-one-out and Q²_10-fold for the 10-fold variant). These metrics allowed direct comparisons with earlier 

research on similar topics, confirming the model's strength independent of the specific data split. 

 

Ligand-based virtual screening approach 

To identify novel prospective inhibitors of FLT3 tyrosine kinase, a virtual screening effort was undertaken 

utilizing the PubChem resource [28, 29]. The screening involved assessing structural resemblance to the 100 most 

potent compounds from the dataset, evaluating each reference compound separately. Specifically, every one of 

these top 100 actives was matched against approximately 10.2 million entries in PubChem [29, 42] via the 

Tanimoto similarity index [43], applying a cutoff of 90%. This procedure relied on the requests package and 

PubChem's PUG-REST similarity functionality. Resulting SMILES strings were then refined by excluding any 

established FLT3 tyrosine kinase inhibitors. 

The refined SMILES collection was inputted into the predictive script for pIC50 estimation, enabling the ranking 

and selection of the five most favorable candidates. This streamlined prioritization supports subsequent 

experimental testing and expedites the identification of effective FLT3 tyrosine kinase inhibitors. 

Results and Discussion 

Molecular diversity of the dataset 

In order to assess the chemical variety within the dataset, clustering was conducted with RDKit [34] by generating 

MACCS key fingerprints [44] for every compound. The chosen clustering method was Butina [45], employing a 

Tanimoto similarity cutoff of 0.3, meaning that compounds grouped together exhibited a similarity score of no 

less than 0.7. The arrangement of compounds into clusters is depicted in Figure 1. 
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Figure 1. Analysis of molecular diversity through clustering. 

 

Figure 1 displays the outcomes of clustering the compound dataset using MACCS key fingerprints and the Butina 

clustering method [44, 45]. The horizontal axis corresponds to cluster identifiers, whereas the vertical axis 

indicates the count of compounds within each cluster. Clusters of greater size reflect collections of compounds 

sharing substantial structural resemblance, pointing to areas of redundancy in the data. In contrast, smaller clusters 

highlight more distinctive chemical entities, signifying higher levels of diversity. 

The clustering revealed an equitable mix of structural similarities and differences, demonstrating that the dataset 

included both closely related groups and distinctly varied compounds. The most populated cluster contained 20% 

of all molecules, followed by the next largest cluster with 13.6%. All other clusters individually represented less 

than 6% of the total compounds. In total, the dataset formed 124 separate clusters—a number substantially 

exceeding the molecule counts utilized in earlier investigations [10-15]. This outcome underscores the markedly 

greater chemical diversity incorporated in the current study relative to previous efforts, thereby providing an 

expanded structural landscape for examination and model construction. Such enhanced diversity is essential for 

building reliable and broadly applicable machine learning frameworks capable of accurately forecasting FLT3 

inhibitor activity in the context of AML therapy. 

 

Comparison of machine learning approaches 

The present investigation assessed the capabilities of several machine learning algorithms trained on the same 

dataset to estimate pIC50 values for 1350 FLT3 tyrosine kinase inhibitors, employing 1269 molecular descriptors. 

The algorithms under comparison encompassed random forest regression (RFR), gradient boosting regression 

(GBR), kernel ridge regression (KRR), Gaussian process regression (GPR), bagging regression with random forest 

(BRF), as well as two artificial neural network configurations developed with Keras (ANN-K) and PyTorch 

(ANN-P). 

Table 1 provides a detailed side-by-side evaluation of these machine learning techniques in forecasting pIC50 

values for FLT3 tyrosine kinase inhibitors, reporting key performance indicators such as R², MAE, SD, and RMSE 

for both training and testing sets. 

 

Table 1. Performance comparison of machine learning models for predicting pIC50 values of FLT3 tyrosine 

kinase inhibitor compounds. 

Metric and ML ANN-P ANN-K BRF GPR KRR GBR RFR 

R2 training 0.983 0.988 0.967 0.641 0.546 0.973 0.988 

MAE training 0.082 0.070 0.136 0.469 0.489 0.126 0.082 

SD training 0.121 0.101 0.172 0.526 0.638 0.154 0.102 

RMSE training 0.123 0.103 0.172 0.568 0.638 0.154 0.102 

R2 test 0.895 0.907 0.931 −0.228 0.592 0.939 0.936 
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MAE test 0.248 0.235 0.207 0.876 0.484 0.195 0.197 

SD test 0.313 0.296 0.255 0.932 0.619 0.237 0.246 

RMSE test 0.315 0.297 0.256 1.076 0.620 0.239 0.246 

 

Overview of model performance 

Performance on training data 

The effectiveness of the various machine learning models during training (evaluated on 1080 compounds) was 

assessed using key metrics including R², MAE, SD, and RMSE (Table 1). The random forest regressor (RFR) 

and the Keras-based artificial neural network (ANN-K) achieved the highest R² values of 0.988, demonstrating 

outstanding fit to the data. These models also displayed minimal errors, with MAE, SD, and RMSE values of 

0.082, 0.102, and 0.102 for RFR, and 0.070, 0.101, and 0.103 for ANN-K, respectively, reflecting their strong 

capacity to explain and reproduce the variance in the training set. 

The gradient boosting regressor (GBR) performed well overall, attaining an R² of 0.973, but showed marginally 

higher error metrics (MAE of 0.126, SD and RMSE both at 0.154) compared with RFR and ANN-K (Table 1). 

This suggests solid predictive ability, though with slightly less consistency in closeness to observed values. 

In comparison, kernel ridge regression (KRR) and Gaussian process regression (GPR) yielded considerably lower 

R² scores of 0.546 and 0.641, respectively (Table 1). Their elevated error values (MAE, SD, and RMSE of 0.489, 

0.638, and 0.638 for KRR; 0.469, 0.526, and 0.568 for GPR) indicate reduced accuracy and greater scatter in 

predictions. 

Taken together, RFR and ANN-K emerged as the most reliable options for tasks demanding high precision, while 

GBR offers a reasonable alternative when minor trade-offs in accuracy are tolerable. KRR and GPR, however, 

may benefit from additional optimization or may be less suitable without further adjustments. These findings 

emphasize the need to choose models aligned with required performance standards and application contexts. 

 

Performance on testing data 

Evaluation of the models on an independent external set (270 compounds not used in training) revealed notable 

differences in generalization ability, using the same metrics (Table 1). Both RFR and GBR delivered excellent 

results, with R² values approaching 0.94, accompanied by low MAEs (0.197 for RFR; 0.195 for GBR) and RMSEs 

(0.246 for RFR; 0.239 for GBR). These outcomes confirm the strength of tree-based ensemble techniques in 

maintaining accuracy on unseen data when applied to QSAR prediction of pIC50 for FLT3 inhibitors. 

The GPR, however, performed poorly on the test set, producing a negative R² of −0.228—worse than a baseline 

mean predictor—along with substantially elevated MAE and RMSE. This points to severe overfitting during 

training or unsuitable assumptions for the dataset, rendering it impractical for real-world use. 

Kernel ridge regression achieved a moderate R² of 0.592 (Table 1), outperforming GPR but lagging behind RFR 

and GBR, indicating partial capture of data patterns without comparable reliability. The neural network models 

(ANN-K and ANN-P) experienced sharp drops in performance from training to testing, with R² values of 0.907 

and 0.895, respectively, and increased errors, highlighting classic overfitting issues. Although ANNs excel at 

complex nonlinear relationships, they are vulnerable to overfitting in noisy or highly correlated feature sets, 

necessitating robust regularization. By contrast, RFR mitigates such risks effectively through ensemble averaging 

and random feature subsetting, contributing to its superior generalization. 

These test results reinforce the value of prioritizing models that balance training fit with strong extrapolation to 

novel compounds. RFR and GBR proved most dependable for routine deployment, whereas GPR, KRR, and the 

ANN approaches may demand extra precautions or modifications to achieve acceptable robustness. 

 

Description of the selected model 

This subsection examines the optimization process via feature selection for the chosen random forest regressor 

(RFR), which was selected for forecasting FLT3 tyrosine kinase inhibitor potency. As depicted in Figure 2, the 

top five molecular descriptors alone contributed substantially, yielding a test R² of 0.893 and underscoring their 

dominant influence on predictive power and model explainability (detailed further in the “Model Interpretation” 

section). Adding descriptors progressively up to the ninth raised the test R² to 0.930, with clear gains that 

subsequently tapered off. After including 41 descriptors, the test R² stabilized at 0.941, indicating that 

incorporating additional features provided negligible further improvement in prediction accuracy. 
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Figure 2. Changes in test R² scores with increasing numbers of descriptors, ordered by decreasing importance. 

 

A key element of this evaluation involves examining the relationships between the selected descriptors, as shown 

in the correlation matrix presented in Figure 3. This matrix illustrates the pairwise Pearson correlation coefficients 

among the 41 chosen descriptors, as well as their individual correlations with the target inhibitory potency 

(pIC50). The color scale spans from −1 (deep blue), representing strong negative correlations, to +1 (deep red), 

denoting strong positive correlations, while values near zero appear in white. Highly correlated descriptor pairs 

were defined using an absolute correlation threshold of 0.90 and were eliminated prior to final model building. 

Consequently, all correlations displayed in Figure 3 are below |0.90| in magnitude. The detection and exclusion 

of such strongly intercorrelated features is vital because they can introduce redundant information, potentially 

compromising model stability and interpretability. By ensuring low intercorrelation among the retained 

descriptors, each contributes distinct and independent information, thereby enhancing the overall reliability and 

predictive strength of the random forest regressor model. 

 

 

Figure 3. Heatmap depicting correlations among the 41 selected descriptors and the target variable (pIC50). 

The visualization presents pairwise Pearson correlation coefficients between descriptors and their 

associations with inhibitory potency (pIC50). The color gradient extends from −1 (deep blue) for strong 

negative correlations to +1 (deep red) for strong positive correlations, with values close to zero shown in 

white. 
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These findings highlight the strength of the random forest regressor (RFR) in modeling intricate nonlinear 

associations between a limited set of descriptors and pIC50 values, thereby achieving an optimal trade-off between 

model complexity and forecasting precision. This reinforces the advantages of ensemble approaches such as RFR 

for managing high-dimensional datasets [46] and stresses the critical role of careful feature selection in 

constructing effective and dependable predictive tools for drug discovery. 

The performance metrics summarized in Table 2 and visualized in Figure 4a illustrate the robust predictive power 

of the optimized RFR model, built using 41 descriptors, for FLT3 tyrosine kinase inhibitors. The model delivered 

an impressive R² of 0.989 on the training set and 0.941 on the test set, demonstrating superior accuracy and 

stability in relating molecular descriptors to pIC50 values across 270 compounds. Supporting error measures, 

including MAE, SD, and RMSE, confirmed high precision in both training and testing phases. The QLOO2 value 

of 0.926 and Q10fold2 value of 0.922 indicate notable predictive reliability through cross-validation, emphasizing 

consistency in the model. 

 

  

a) b) 

Figure 4. (a) Scatter diagram demonstrating the effectiveness of the random forest regressor (RFR) model. 

The model was developed using 1080 compounds (represented by green dots) and validated externally on 270 

compounds (shown as red dots). The graph depicts the relationship between predicted and observed pIC50 

values for inhibitors of FLT3 tyrosine kinase. (b) Screenshot of the user-friendly application created for 

estimating pIC50 values of potential FLT3 tyrosine kinase inhibitors. 

 

Table 2. Evaluation of Random Forest Models for predicting pIC50 Values of FLT3 Tyrosine Kinase Inhibitor 

Compounds Using 41 Components. 

Metric Test Set Training Set 

R² 0.941 0.989 

Size 270 1080 

MAE 0.193 0.081 

Standard Deviation (SD) 0.237 0.101 

RMSE 0.238 0.101 

Q10-fold² 0.922 

QLOO² 0.926 

 

Comparison with previous QSAR models 

The random forest regressor (RFR) model, constructed using 41 selected descriptors, was benchmarked against 

earlier QSAR investigations focused on FLT3 tyrosine kinase inhibitors, with results summarized in Table 3. This 

model substantially outperformed prior efforts in forecasting pIC50 values for novel compounds, delivering a test-

set R² of 0.941 and a standard deviation of 0.237. In comparison, previous works reported maximum R² values of 
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0.891 and minimum standard deviations of 0.3. The superior results achieved here demonstrate not only greater 

predictive precision but also the benefits of training and validating on a larger and more chemically diverse 

collection of 270 compounds, which strengthens the model's capacity to reliably estimate FLT3 tyrosine kinase 

inhibitory activity across a wider structural space. Additionally, the leave-one-out cross-validation Q² of 0.926—

considerably higher than the 0.802 or lower values obtained in prior studies—indicates reduced sensitivity to 

individual data points or specific descriptors, highlighting enhanced robustness relative to earlier QSAR 

approaches. 

Table 3. Performance comparison of QSAR models developed for FLT3 inhibitors. 

Author (Year) 
Kar 

(2012)a 

Shih 

(2012)a 

Abutayeh 

(2019)a 

Bhujbal 

(2020)a 

Fernandes 

(2020)a 

Ghosh 

(2021)a 

This 

Work 

Train set size 51 25 76 45 28 30 1080 

Dataset size 67 72 93 63 40 40 1350 

Test set size 16 47 17 18 12 10 270 

R² test 0.891 0.76 0.57 0.707 0.80 0.698 0.941 

R² training 0.956 0.98 0.86 0.956 0.80 0.983 0.989 

SD test 0.435 0.66 - >0.895 0.31 0.452 0.237 

Q²LOO 0.747 0.58 0.65 0.57 0.60 0.802 0.926 
a Data obtained from [10-15]. 

 

These results highlight the strength of a purely ligand-based strategy when underpinned by an extensive and 

chemically varied dataset, establishing this approach as a highly practical and trustworthy instrument for drug 

design. 

 

Interpretation of the Model 

Model interpretability was attained through a detailed conceptual examination of the five descriptors that exerted 

the greatest influence on predictive performance. These top-ranked descriptors, presented in Table 4, are SHBdb, 

MLFER_S, nBase, MaxsssN, and MLFER_BH, each recognized for their critical contributions to the model's 

accuracy. 

 

Table 4. Identification and description of the five most influential descriptors contributing to the model, ranked 

by importance. 

Priority Name Descriptor Description 

5° 

Overall solute 

hydrogen bond 

basicity 

MLFER_BH 

[47, 48] 

Total hydrogen bond basicity of the molecule, obtained by summing 

the contributions from all potential hydrogen bond acceptor sites. 

4° 
Maximum atom-

type E-state: >N– 

MaxsssN [49, 

50] 

Highest electrotopological state value among nitrogen atoms bearing 

three single bonds. 

3° 
Number of basic 

groups 
nBase 

Count of basic functional groups in the molecule, primarily nitrogen-

containing groups capable of accepting protons. 

2° 

Molecular linear 

free energy relation 

(S) 

MLFER_S 

[47, 51] 

Overall polarizability/dipolarity descriptor derived from the 

cumulative contributions of solvatophilic groups, based on 

established empirical solvent interaction parameters. 

1° 

Sum of E-states for 

(strong) hydrogen 

bond donors 

SHBdb [49, 

51] 

The sum of intrinsic electrotopological state values for all strong 

hydrogen bond donor atoms, accounting for their electronic and 

topological environment. 

 

SHBdb 

The association between SHBdb values and pIC50 levels, as shown in Figure 5a, illustrates the subtle balance 

essential for effective FLT3 tyrosine kinase inhibitor design. The SHBdb descriptor captures the strength and 

distribution of strong hydrogen bond donors, which are vital for forming stable contacts within the FLT3 active 

site. These donors enable critical hydrogen bonding with key residues, including Cys694 and Cys695 in the hinge 

region [13]. Optimal inhibitory potency is observed when SHBdb falls within the narrow window of 1–1.5. Values 

outside this interval result in reduced activity, since either too few or too many strong hydrogen bond donors can 

impair binding affinity or specificity. This pattern is consistent with observations reported by Kar et al. [10], who 
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stressed the importance of fine-tuning hydrogen bond donor properties to prevent loss of selectivity or excessive 

interaction. Thus, SHBdb serves as a key guide for optimizing hydrogen bond donor features, thereby improving 

both the potency and target selectivity of candidate inhibitors. 

 

   

a) b) c) 

  

d) e) 

Figure 5. Scatter plots (a–e) depicting the correlations between the five most critical molecular descriptors 

(SHBdb, MLFER_S, nBase, MaxsssN, and MLFER_BH) and FLT3 inhibitor potency (expressed as pIC50) 

for compounds in both training and test datasets. The green highlighted areas in each panel mark the 

descriptor value ranges linked to elevated potency. 

 

MLFER_S 

Examination of Figure 5b indicates that the ideal range for MLFER_S in potent FLT3 tyrosine kinase inhibitors 

lies between 3.1 and 4.5. This descriptor measures overall polarizability and dipolarity, reflecting the molecule’s 

capacity for hydrophobic and solvophobic interactions that are essential for fitting into the hydrophobic regions 

of the FLT3 binding pocket, involving residues such as Phe830 and Tyr693 [13]. Compounds falling within this 

range displayed maximum inhibitory potency, whereas those outside it showed reduced efficacy. These 

observations agree with the results reported by Shih et al. [11], who established that balanced hydrophobic 

contributions improve ligand binding affinity and target specificity. Consequently, MLFER_S emphasizes the 

need to carefully calibrate hydrophobicity and solubility to achieve optimal performance in FLT3 inhibitor design. 

 

nBase, MaxsssN, and MLFER_BH 

The patterns observed for nBase, MaxsssN, and MLFER_BH in Figures 5c–5e, respectively, together illustrate 

the complex interplay between structural features and FLT3 inhibitory potency. 

Highest activity was achieved when compounds possessed exactly two basic groups (Figure 5c). Such basic 

functionalities promote electrostatic interactions and hydrogen bonding with key FLT3 residues, including 

Asp698 and Lys644 [12]. This finding corroborates the work of Kar et al. [10], which underscored the value of 

basic nitrogen atoms in strengthening ligand–receptor complexes. 

The MaxsssN descriptor captures the electrotopological state of tertiary nitrogen atoms (those with three single 

bonds), commonly found in amine or amide moieties, which play a vital role in hydrogen bonding and electrostatic 

contacts. Enhanced potency was evident in compounds with MaxsssN values above 1.5, becoming particularly 

pronounced beyond 2.2, consistent with prior reports [11]. These nitrogen features substantially support effective 

binding and selectivity in the FLT3 active site. 

MLFER_BH, in turn, provides a comprehensive measure of the molecule’s total hydrogen bond acceptor strength. 

The strongest inhibitory effects were seen in compounds with MLFER_BH exceeding 3.1, where acceptor 
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groups—such as carbonyl oxygens or heterocyclic nitrogens—establish robust hydrogen bonds with residues like 

Gly697 and Cys695 [15]. This broader descriptor extends beyond nitrogen-specific contributions to include all 

potential acceptor sites, affirming the central importance of hydrogen bond acceptance in the inhibition 

mechanism. 

Together, nBase, MaxsssN, and MLFER_BH encapsulate key physicochemical properties—electrostatics, 

hydrogen bonding capacity, and acceptor distribution—that govern FLT3 inhibition. These insights, backed by 

multiple independent studies [10-12], validate the significance of these descriptors for guiding the rational 

optimization of next-generation therapeutic agents. 

 

Discovery of novel FLT3 inhibitors via ligand-based virtual screening 

By employing ligand-based virtual screening (LBVS) with the developed cheminformatics model, several highly 

promising candidates with strong predicted inhibitory activity against FLT3 tyrosine kinase were uncovered. The 

five most promising compounds are listed in Table 5. These selections feature structural similarities to gilteritinib, 

an advanced-generation FLT3 inhibitor [52]. This strategy demonstrates the power of LBVS in rapidly pinpointing 

molecules with favorable biological profiles solely from ligand information, bypassing the need for target 

structure or physical assays. The identified pyrazinecarboxamide derivatives exhibit predicted pIC50 values 

approaching that of gilteritinib (9.39) [53], illustrating the effectiveness of this computational pipeline in 

accelerating the identification of new FLT3-targeted agents for AML harboring FLT3 mutations. Overall, these 

results deepen our knowledge of FLT3 inhibitor structure–activity relationships and offer valuable candidates for 

subsequent experimental evaluation and validation. 

 

Table 5. Top five candidates for FLT3 inhibitors identified by ligand-based virtual screening. 

IUPAC Name pIC50 Structure 

6-Ethyl-3-[3-methoxy-4-[4-(1-methylpiperidin-4-

yl)piperazin-1-yl]anilino]-5-(oxan-4-ylamino)pyrazine-

2-carboxamide 

9.34 

 

6-Ethyl-3-[3-methoxy-4-[4-(4-propan-2-ylpiperazin-1-

yl) piperidin-1-yl]anilino]-5-(oxan-4-ylamino)pyrazine-

2-carboxamide 

9.34 

 

3-[4-[4-(1-Methylpiperidin-4-yl)piperazin-1-yl]anilino]-

5-(oxan-4-ylamino)-6-propan-2-ylpyrazine-2-

carboxamide 

9.29 

 

6-(1-Methyl-3,6-dihydro-2H-pyridin-4-yl)-3-[4-[4-(4-

methylpiperazin-1-yl)piperidin-1-yl]anilino]-5-(oxan-4-

ylamino)pyrazine-2-carboxamide 

9.27 
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6-Ethyl-3-[4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]-

3-propan-2-yloxyanilino]-5-(oxan-4-ylamino)pyrazine-

2-carboxamide 

9.27 

 

 

The association between the molecules listed in Table 5 and the descriptors SHBd, MLFER_S, nBase, MaxsssN, 

and MLFER_BH underscores the link between molecular substructures and inhibitory potency. In compounds 

such as 6-Ethyl-3-[3-methoxy-4-[4-(1-methylpiperidin-4-yl)piperazin-1-yl]anilino]-5-(oxan-4-

ylamino)pyrazine-2-carboxamide, elevated SHBd levels arise from numerous hydrogen bond donor moieties, 

thereby boosting their inhibition effectiveness. For structures like 3-[4-[4-(1-Methylpiperidin-4-yl)piperazin-1-

yl]anilino]-5-(oxan-4-ylamino)-6-propan-2-ylpyrazine-2-carboxamide, increased MLFER_S scores indicate the 

inclusion of polarophilic functional groups that enhance aqueous solubility and binding interactions with the target 

protein. The prevalence of basic functionalities (nBase), including amine groups and piperidine moieties, is 

common across these selected compounds. As an example, the compound 6-Ethyl-3-[4-[4-(4-methylpiperazin-1-

yl)piperidin-1-yl]-3-propan-2-yloxyanilino]-5-(oxan-4-ylamino)pyrazine-2-carboxamide contains multiple 

nitrogen centers that increase its basic character. Compounds exemplified by 6-(1-Methyl-3,6-dihydro-2H-

pyridin-4-yl)-3-[4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]anilino]-5-(oxan-4-ylamino)pyrazine-2-

carboxamide show raised MaxsssN figures owing to tertiary nitrogens in piperazine units. Lastly, MLFER_BH 

represents the cumulative hydrogen bond basicity across all possible acceptor positions. Pyrazine-2-carboxamide-

based derivatives feature abundant hydrogen bond acceptor locations, which amplify their total hydrogen bond 

basicity and improve affinity toward the FLT3 tyrosine kinase. 

 

Script-like tool description 

To improve accessibility of the predictive model, a freely available script-oriented tool was developed for 

automatic computation of pIC50 and IC50 values from any input compound's SMILES notation (Figure 4b). This 

resource is available through the link: https://github.com/Jacksonalcazar/Prediction-of-FLT3-Inhibitory-Activity 

(created on 6 July 2024). The tool is engineered for ease of use and speed, allowing straightforward processing of 

multiple SMILES entries in an automated fashion, with outputs generated in mere seconds. 

Conclusion 

This research effectively illustrated the utility and strength of a combined QSAR-machine learning framework for 

estimating pIC50 values of FLT3 tyrosine kinase inhibitors, drawing on detailed ligand structural properties. The 

achievement stemmed from utilizing a broad and varied compound collection, which encompassed essential 

elements influencing their biological effects. Through thorough dataset assembly, in-depth descriptor 

examination, and careful comparison of multiple machine learning techniques, the resulting model exhibited 

outstanding predictive power alongside relative straightforwardness. 

In particular, the random forest regressor proved superior, substantiated by stringent external and internal 

validation protocols. It offers a straightforward yet dependable resource for spotting prospective FLT3 inhibitors, 

supported by Q²_LOO of 0.926 and Q²_10-fold of 0.922 over a diverse dataset. Furthermore, it achieved an R² of 

0.941 and SD of 0.237 when forecasting pIC50 for 270 external FLT3 inhibitor compounds. 

The feature refinement and selection efforts also underscored the vital role of certain molecular descriptors in 

determining inhibitor effectiveness, yielding important structural insights that can guide the targeted development 

of novel FLT3 inhibitors and refine drug discovery by emphasizing beneficial traits. 

Additionally, the creation of an accessible script-based prediction tool marks a noteworthy advancement in 

cheminformatics resources, providing investigators with an effective and practical way to assess potential FLT3 

inhibition of candidate molecules, inclusive of ligand-based screening applications. The tool's capacity for large-

scale use was evidenced by its handling of up to 10.2 million compounds, highlighting its appropriateness for 
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extensive virtual screening. It also independently manages descriptor generation and predictions, with support for 

RDKit and Open Babel inputs, promoting efficient integration without additional software dependencies. 

Overall, this work delivers a straightforward predictive framework for pIC50 estimation in FLT3 tyrosine kinase 

inhibitors, establishing an advanced standard in merging machine learning with QSAR for therapeutic 

development. The method provides improved accuracy and ease of use, aiding swift detection of promising AML 

treatments through FLT3 targeting. The tool's robustness, speed, and interoperability further establish it as an 

essential asset in cheminformatics and initial drug design phases. 
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