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ABSTRACT 

Computational and informatics-driven methodologies have become essential components of modern drug 

discovery, particularly for the development of targeted anticancer agents with improved selectivity and minimized 

adverse effects. In the present study, three previously unreported compounds were conceived through a structure-

based design strategy and subsequently synthesized. In silico screening predicted favorable pharmacokinetic and 

toxicity-related properties, as well as strong binding affinity toward the G protein-coupled estrogen receptor 

(GPER). These computational findings were supported by experimental antiproliferative evaluations conducted 

in multiple cancer cell lines. To elucidate the molecular basis of receptor–ligand recognition, molecular docking 

was integrated with molecular dynamics simulations and molecular mechanics/generalized Born surface area 

(MMGBSA) calculations. The resulting models indicated stable ligand accommodation within the GPER binding 

cavity, mediated by critical interactions with a cluster of aromatic residues comprising F206, F208 and F278, 

which are known to govern ligand recognition at this receptor. Biological assessment using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that compounds 4, 5 and 7 

significantly reduced the viability of MIA Paca-2, RCC4-VA and Hep G2 cancer cells at micromolar 

concentrations. Collectively, these findings suggest that strategic modification of the GPER pharmacophore can 

yield novel ligands capable of effectively engaging the receptor and exerting growth-suppressive effects in 

nontraditional GPER-expressing cancer models. 
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Introduction 

Steroid hormones are well recognized as key contributors to tumor initiation and progression [1]. Within this 

hormone family, estrogen regulates a broad spectrum of physiological and pathological processes through 

transcription-dependent pathways, commonly referred to as genomic signaling mechanisms [2]. In parallel, 

estrogen is also capable of eliciting rapid cellular responses via nongenomic signaling, which involves 

intracellular cascades triggered by membrane-associated receptors, particularly G protein-coupled receptors 

(GPCRs) [3]. More recently, an estrogen-responsive membrane receptor has been identified as a relevant 

pharmacological target in breast cancer, stimulating the development of novel ligands for anticancer therapy [3, 

4]. This receptor, initially termed GPR30, has since been renamed the G protein-coupled estrogen receptor 

(GPER) by the International Union of Basic and Clinical Pharmacology (IUPHAR; www.iuphar.org/). 

GPER is a member of the seven-transmembrane GPCR superfamily, which represents the largest and most 

therapeutically relevant class of drug targets in modern pharmacology [5, 6]. It belongs specifically to the class A 

rhodopsin-like GPCRs and primarily signals through coupling with Gαi/o proteins, while secondary signaling 
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occurs via Gαs proteins. Activation of GPER initiates a complex network of intracellular signaling pathways, 

including epidermal growth factor receptor (EGFR) transactivation, mitogen-activated protein kinase (MAPK) 

signaling, elevation of intracellular cyclic AMP (cAMP) levels, and calcium mobilization [7-9]. The 

dihydroquinoline derivative G1 was identified as the first synthetic GPER agonist that does not interact with 

classical estrogen receptors (ERα and ERβ) [10]. This compound shares a common structural scaffold with known 

GPER antagonists such as G15 and G36, differing primarily in their substituent patterns, which are believed to 

determine their agonistic or antagonistic behavior [10–13]. 

GPER has emerged as a promising therapeutic target across multiple cancer types, with reported growth-inhibitory 

effects observed in renal [14], hepatic [15], and pancreatic [16] cancer models. Notably, GPER-mediated 

biological responses vary depending on tissue type, disease state, and receptor expression levels [17, 18]. 

Advances in computational modeling have provided valuable structural insights into the mechanisms underlying 

GPER activation and inhibition, facilitating the rational discovery of improved ligands [19, 20]. In a prior 

investigation, docking and molecular dynamics (MD) simulations combined with molecular 

mechanics/generalized Born surface area (MMGBSA) calculations were employed to elucidate the structural and 

energetic determinants of ligand recognition at the GPER binding site. That study identified several critical 

residues involved in ligand binding, including a cluster of aromatic phenylalanines (F206, F208 and F278) and a 

polar residue, N310, which plays a pivotal role in receptor activation and deactivation processes [21]. 

Building on these insights, the present work aimed to introduce targeted chemical modifications to the GPER 

pharmacophore in order to enhance molecular recognition through additional noncovalent interactions and to 

exploit secondary binding pockets that could improve receptor selectivity and affinity. One modification involved 

replacing a bromine substituent with a phenyl ring bearing either an electron-withdrawing nitro group at the meta 

position (compound 4) or an electron-donating methoxy group (compound 5). A second strategy focused on 

increasing hydrophobic interactions by introducing a tert-butyl substituent on the piperidine ring (compound 7), 

with the goal of strengthening interactions with the aromatic phenylalanine cluster. 

The design process was initiated using a previously synthesized G1 analog developed by our research group, 

hereafter referred to as G1-PABA [22]. This compound was obtained by modifying the p-aminoacetophenone 

moiety of G1 with p-aminobenzoic acid, a fragment previously reported to exhibit inhibitory effects in breast 

cancer cells [22, 23]. Following the synthesis of G1-PABA, compounds 4, 5 and 7 were prepared and evaluated 

for antiproliferative activity in renal, liver and pancreatic cancer cell lines. All compounds demonstrated half-

maximal inhibitory concentration (IC₅₀) values below 50 µM. Furthermore, their binding behavior within the 

GPER active site was investigated using docking and MD simulations coupled with MMGBSA calculations, 

enabling a direct comparison between computational predictions and experimental observations. 

Materials and Methods  

Computational docking and in silico property assessment 

To investigate the molecular recognition between GPER and the designed ligands, a computational docking 

workflow was implemented. Chemical structures of the compounds were initially generated in two dimensions 

using ChemBioDraw Ultra 12.0 [24]. These representations were subsequently converted into Z-matrix formats 

using GaussView 5.0 [25], enabling accurate definition of atomic connectivity and hydrogen placement. Structural 

optimization was carried out using the AM1 semiempirical method as implemented in Gaussian 09, ensuring 

energetically favorable conformations prior to docking [26]. 

Docking simulations employed a previously reported and validated three-dimensional model of GPER [20]. All 

calculations were performed with AutoDock 4.2.6 [27]. Polar hydrogens were incorporated into the receptor 

structure, and Kollman charges were assigned accordingly, while ligands were parameterized using Gasteiger 

charges. A focused docking protocol was applied, defining the search space as a cubic grid centered on the Cα 

atom of residue N310 with dimensions of 60 Å³ and a grid spacing of 0.375 Å. Ligand conformational sampling 

was conducted using the Lamarckian genetic algorithm, with a population size of 100 individuals and a maximum 

of 1 × 10⁷ energy evaluations. The resulting docking poses and interaction patterns were analyzed visually using 

PyMOL v0.99 [28]. 

Drug-likeness and physicochemical descriptors were calculated using the Molinspiration platform [29], whereas 

ADME-tox profiles were predicted with DataWarrior software [30]. 

 

Construction of membrane-embedded GPER–ligand systems 
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To mimic a biologically relevant environment, GPER–ligand complexes (GPER-4, GPER-5 and GPER-7) were 

oriented relative to a phospholipid bilayer using the Orientations of Proteins in Membranes (OPM) server [31]. 

Fully hydrated POPC bilayers were generated with the CHARMM membrane builder [32], yielding rectangular 

systems with dimensions of 110.437 × 110.437 × 122.485 Å. 

The receptor–ligand complexes were incorporated into the lipid matrix using a replacement-based embedding 

strategy implemented in CHARMM [33, 34]. Each membrane system consisted of approximately 314 POPC 

molecules, asymmetrically distributed between the extracellular and intracellular leaflets. Solvation was 

performed using the TIP3P water model, and physiological ionic strength (0.15 M NaCl) was achieved through 

system neutralization and ion placement using CHARMM utilities [33]. 

 

Molecular dynamics simulations 

All-atom MD simulations were carried out using the GPU-accelerated pmemd.cuda engine within AMBER 12 

[35]. System topologies were assembled using the LEaP module, applying the ff99SB force field for protein atoms, 

Lipid11 parameters for membrane lipids, and GAFF for ligand description [36, 37]. 

Each system underwent a multistep relaxation protocol. Initial energy minimization (10,000 steps) was performed 

with positional restraints applied to protein and lipid atoms, allowing solvent relaxation. Temperature 

equilibration was achieved by gradually heating the systems from 0 to 300 K under constant volume (NVT) 

conditions across two consecutive 1 ns simulations. This was followed by a 1 ns equilibration under constant 

pressure (NPT) at 300 K and 1 bar with restrained heavy atoms, and an additional 1 ns equilibration with all 

restraints removed. 

Production MD simulations were conducted for 100 ns under periodic boundary conditions in the NPT ensemble. 

Electrostatic interactions were treated using the particle mesh Ewald (PME) approach [38], while van der Waals 

forces were truncated at 10 Å. Hydrogen-containing bonds were constrained using the SHAKE algorithm [39]. 

Temperature regulation employed Langevin dynamics, and pressure was maintained using semi-isotropic 

coupling to preserve membrane integrity and area per lipid. The integration time step was set to 2 fs, and atomic 

coordinates were saved every 1 ps for downstream analyses. 

 

Evaluation of molecular dynamics trajectories 

The root-mean-square deviation (RMSD) values were determined solely for the backbone Cα atoms, while the 

radius of gyration (Rg) was assessed for the entire receptor structure, following removal of global translational 

and rotational movements. Lipid area per headgroup was derived from the formula: area per lipid = (simulation 

box X dimension × box Y dimension) / total phospholipids per monolayer. Representative structures, reflecting 

the most thermodynamically favored and biologically relevant states, were extracted via RMSD-based clustering 

implemented with the GROMOS method in the g_cluster tool, applying a 0.25 nm threshold [40]. These clusters 

facilitated analysis of key structural traits in the stabilized GPER–ligand assemblies. All figures and molecular 

renderings were created with PyMOL version 0.99 [28]. 

 

Essential dynamics via principal component analysis 

To explore correlated atomic fluctuations, principal component analysis (also termed essential dynamics) [41] 

was conducted using the g_covar and g_anaeig tools from GROMACS version 4.5.3 [42, 43]. A covariance matrix 

of atomic positional fluctuations was built and diagonalized, producing eigenvectors (describing motion 

directions) and eigenvalues (indicating motion amplitudes). Trajectories for each GPER–ligand system were then 

projected onto the principal eigenvectors to delineate the dominant modes of collective motion. 

 

Estimation of absolute binding free energies 

Binding free energies for GPER in complex with each ligand were derived via the MM/GBSA approach, 

employing a single-trajectory strategy [44-51]. Solvent molecules and ions were excluded from trajectories before 

calculations. For every system, 400 frames were uniformly sampled (at 100 ps intervals) from the equilibrium 

phase comprising the final 40 ns of each MD run. The overall binding free energy (ΔGbind) was obtained using: 

 

∆G bind = G complex − G receptor − G ligand (1) 

= ∆E MM + ∆G GB + ∆G SA − T∆S (2) 
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Here, ΔEMM denotes the molecular mechanics energy in vacuum (sum of van der Waals ΔEvdw and electrostatic 

ΔEele components); ΔGGB and ΔGSA represent polar and nonpolar desolvation penalties, respectively; and 

−TΔS captures the conformational entropy loss upon association. By incorporating the entropic term, the resulting 

MM/GBSA estimates qualify as absolute binding free energies (ΔGbind). 

 

Determination of entropic terms 

The conformational entropy contribution (−TΔS) was quantified for each complex with the MMPBSA.py tool in 

Amber 12. Owing to the substantial computational resources required for normal-mode calculations, a reduced 

set of 20 frames per trajectory—spaced every 2 ns across the last 40 ns—was utilized. 

 

Synthetic procedures 

Commercially sourced reagent-grade materials were employed directly without additional purification. Reaction 

monitoring was performed via thin-layer chromatography (TLC) on aluminum-supported silica gel 60 GF254 

plates (HX805651) incorporating a UV-active indicator, with detection at 254 nm. Column purification utilized 

silica gel 60 (230–400 mesh). Uncorrected melting points were recorded on an Electrothermal IA 91000 

instrument (Electrothermal, Bibby Scientific, Staffordshire, ST15 OSA, UK). Nuclear magnetic resonance spectra 

(1H and 13C) were acquired on a Varian Mercury 300 MHz instrument or a Bruker Avance III 750 MHz system, 

using DMSO-d6 or CDCl3 as solvent and TMS as reference. Chemical shifts (δ) are given in ppm relative to 

TMS, with J values in Hz. Positive-mode high-resolution electrospray ionization mass spectra (ESI-HRMS) were 

collected on an Agilent 6545 QTOF LC/MS (Agilent Technologies, Santa Clara, CA, USA). 

 

Preparation of (3aS,4R,9bR)-4-(6-Bromobenzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H 

cyclopenta[c]quinoline-8-carboxylic acid (G1-PABA, 1) 

Both G1-PABA (1) and its tert-butyl-protected analog (compound 7) were prepared according to established 

protocols previously described by our laboratory [22, 23]. 

 

Preparation of (3aS,4R,9bR)-4-(6-(3-Nitrophenyl)benzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-carboxylic acid (4) 

Compound 4 was synthesized adapting a reported procedure [52]. A mixture of G1-PABA (0.020 g, 0.048 mmol), 

3-nitrophenylboronic acid (0.0096 g, 0.057 mmol), PEG2000 (0.060 g, 0.10 mmol), and Pd(OAc)2 (0.004 g, 0.017 

mmol) was added to a stirred solution of K2CO3 (0.0266 g, 0.19 mmol) in 1:1 MeOH/H2O (7 mL) (Scheme 1). 

The reaction was heated at 70 °C under nitrogen for 5 h. Upon cooling, the mixture was partitioned with EtOAc 

(3 × 25 mL). The organics were sequentially washed with water and brine, dried (Na2SO4), and evaporated. Flash 

chromatography (hexane/EtOAc 7:3) provided compound 4 as a pale brown solid (55% yield); Rf = 0.42 

(hexane/EtOAc 7:3); mp 184–185 °C; HPLC purity 97.19%. 1H NMR (750 MHz, CDCl3) δ 8.22 (d, 1H, J = 7.5 

Hz, H-4′′), 8.14 (bs, 1H, H-2′′), 7.68 (d, 1H, J = 7.5 Hz, H-7), 7.67 (s, 1H, H-9), 7.60 (d, 1H, J = 7.5 Hz, H-6′′), 

7.57 (t, 1H, J = 7.5 Hz, H-5′′), 7.26 (s, 1H, H-7′), 7.23 (s, 1H, H-4′), 6.68 (s, 1H, NH), 6.56 (d, 1H, J = 7.5 Hz, H-

6), 6.06 and 6.05 (AB, 2H, H-2′), 5.88 (bm, 1H, H-1), 5.69 (bm, 1H, H-2), 4.29 (d, 1H, J = 3.7 Hz, H-4), 4.22 (d, 

1H, J = 6.0 Hz, H-9b), 2.67 (m, 1H, H-3a), 1.71 (m, 1H, H-3 down), 1.44 (m, 1H, H-3 up). 13C NMR (187.5 

MHz, CDCl3) δ 167.9 (CO2H), 150.4 (C-7a’), 148.3 (C-3′’), 148.2 (C-3′), 146.9 (C-5a), 142.5 (C-1′′), 135.6 (C-

6′′), 133.9 (C-2), 133.1 (C-6′), 132.6 (C-9), 132.0 (C-1), 130.6 (C-4′), 129.6 (C-5′′), 129.5 (C-2′′), 124.8 (C-7), 

124.4 (C-4′′), 122.6 (C-9a), 119.4 (C-8), 115.3 (C-6), 110.4 (C-4′), 107.1 (C-7′), 101.8 (C-2′), 53.6 (C-4), 45.6 

(C-9b), 39.0 (C-3a), 38.9 (C-3). HRMS (ESI) calcd for [C26H20N2O6 + H]+: 457.1400; found: 457.13824. 

 

 
Scheme 1. Assembly of compound 4 through PEG2000-assisted coupling reaction in inert atmosphere. 
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Assembly of (3aS,4R,9bR)-4-(6-(3-Methoxyphenyl)benzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-carboxylic acid (5) 

The target molecule 5 was constructed via Suzuki–Miyaura palladium-catalyzed coupling [53]. An aqueous DMF 

solution containing K2CO3 (0.0266 g, 0.19 mmol) in DMF (1.5 mL) and H2O (1.5 mL) was degassed and stirred 

under N2 for 15 minutes. G1-PABA (0.020 g, 0.048 mmol), 3-methoxyphenylboronic acid (0.0096 g, 0.057 

mmol), PPh3 (0.0015 g, 0.0057 mmol), and Pd(OAc)2 (0.0004 g, 0.017 mmol) were then charged. Heating at 100 

°C proceeded for 24 hours (Scheme 2). The cooled mixture was diluted and extracted into EtOAc (3 × 25 mL). 

Organics were washed sequentially with H2O and brine, dried (Na2SO4), and removed in vacuo. Column 

purification on silica (hexane/EtOAc 8:2) gave 5 as a gray solid (13% yield); Rf = 0.5 (hexane/EtOAc 8:2); mp = 

200 °C; HPLC purity 87.31%. 1H NMR (300 MHz, CDCl3) δ 7.69 (d, 1H, J = 7.1 Hz, H-7), 7.68 (s, 1H, H-9), 

7.31 (t, 1H, J = 8.8 Hz, H-5′′), 7.18 (s, 1H, H-7′), 6.88 (dd, 1H, J = 7.9, 2.9 Hz, H-6′′), 6.82 (d, 1H, J = 7.6 Hz, H-

4′′), 6.78 (d, 1H, J = 1.7 Hz, H-2′′), 6.71 (s, 1H, H-4′), 6.54 (d, 1H, J = 8.8 Hz, H-6), 6.02 (m, 2H, H-2′), 5.90 (m, 

1H, H-1), 5.69 (m, 1H, H-2), 4.70 (d, 1H, J = 3 Hz, H-4), 3.81 (s, 3H, OMe), 3.81 (dd, 1H, J = 17.6, 8.8 Hz, H-

9b), 2.80 (dt, 1H, J = 8.3, 3 Hz, H-3a), 2.64 (dd, J = 15.2, 8.3 Hz, H-3 down), 1.97 (m, 1H, H-3 up). 13C NMR 

(75 MHz, CDCl3) δ 171.6 (CO2H), 159.3 (C-1′′), 150.6 (C-5a), 147.4 (C-3′a), 142.0 (C-7′a), 146.2 (C-1′′), 135.1 

(C-5′), 132.6 (C-9a), 124.7 (C-6′), 118.8 (C-8), 101.2 (C-2′), 131.8 (C-7), 129.3 (C-9), 128.0 (C-5′′), 106.5 (C-7′), 

112.3 (C-6′′), 121.7 (C-4′′), 115.2 (C-2′′), 110.3 (C-4′), 114.9 (C-6), 133.7 (C-1), 130.6 (C-2), 53.2 (C-4), 55.2 

(OMe), 45.4 (C-9b), 44.5 (C-3a), 31.9 (C-3). HRMS (ESI) calcd for [C27H23NO5 + H]+: 442.1654; found: 

442.1646. 

 

 
Scheme 2. Construction of compound 5 via Suzuki–Miyaura methodology. 

 

Assembly of (3aS,4R,9bR)-4-(6-Bromobenzo[d][1,3]dioxol-5-yl)-5-(tert-butoxycarbonyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-carboxylic acid (7) 

G1-PABA dissolved in DMF (3.0 mL) was cooled, treated slowly with Et3N (336 μL, 2.413 mmol), and stirred 

for 30 minutes. Boc2O (0.5268 g, 2.413 mmol) was introduced, the cooling bath removed, and stirring continued 

overnight at ambient temperature (Scheme 3). TLC monitoring guided workup: extraction into EtOAc (3 × 25 

mL), washing with H2O and brine, drying (Na2SO4), and solvent removal. Silica gel chromatography 

(hexane/EtOAc 9:1) afforded 7 as a pale yellow solid (54% yield); Rf = 0.63 (hexane/EtOAc 9:1); mp = 184.3 

°C; HPLC purity 95.50%. 1H NMR (300 MHz, CDCl3) δ 7.88 (d, 1H, J = 1.5 Hz, H-9), 7.81 (dd, 1H, J = 8.4, 1.5 

Hz, H-7), 7.61 (d, 1H, J = 8.8 Hz, H-6), 6.94 (s, 1H, H-7′), 6.29 (s, 1H, H-4′), 6.17 (m, 1H, H-1), 6.05 (d, 1H, J = 

9.7 Hz, H-4), 5.85 (AB, 2H, H-2′), 5.64 (m, 1H, H-2), 3.85 (bd, 1H, J = 8.4 Hz, H-9b), 3.44 (q, 1H, J = 8.3 Hz, 

H-3a), 2.20 (dd, 1H, J = 16.3, 8.3 Hz, H-3 down), 1.79 (dd, 1H, J = 16.5, 6.8 Hz, H-3 up), 1.40 (s, 9H, OtBu). 

13C NMR (75 MHz, CDCl3) δ 165.6 (CO2H), 153.3 (C-carbamate), 147.0 (C-7′a), 146.9 (C-3′a), 141.4 (C-5a), 

134.2 (C-9a), 132.2 (C-5′), 114.4 (C-6′), 81.7 (C-tBu), 129.0 (C-9), 127.4 (C-7), 124.7 (C-6), 112.3 (C-7′), 107.9 

(C-4′), 133.0 (C-1), 56.0 (C-4), 101.6 (C-2′), 131.8 (C-2), 43.5 (C-9b), 41.6 (C-3a), 34.9 (C-3), 28.2 (3Me-tBu). 

HRMS (ESI) calcd for [C25H24BrNO6Na] + [M + Na]+: 536.0679; found: 536.0669. 
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Scheme 3. Installation of Boc protecting group to yield compound 7. 

 

Compound purity assessment via HPLC 

Purity evaluations were conducted on an Agilent 1260 Infinity chromatograph (Agilent Technologies, Palo Alto, 

CA, USA) equipped with quaternary pump (G1311B), automated injector (G1316A), thermostatted column 

compartment (G1316A), and multi-wavelength UV detector (G1315C). Data acquisition and processing utilized 

OpenLab CDS EZChrom software. An isocratic mobile phase comprising 40% aqueous 0.2% acetic acid (pH 3.0) 

and 60% acetonitrile was delivered at 0.5 mL/min through a Zorbax SB-C18 column (5 μm, 4.6 × 150 mm) held 

at 25 °C. Mobile phases were freshly prepared daily from filtered (0.22 μm) and degassed deionized water. No 

column reconditioning was necessary between analyses. Compounds exhibiting ≥95% purity were considered 

suitable. 

 

Maintenance of cell lines 

The study involved four human tumor-derived cell lines. RCC4 renal carcinoma cells were engineered to express 

either empty pcDNA3 vector (neomycin-resistant; RCC4-VA, ECACC N-03112702) or pcDNA3 carrying the 

VHL gene (RCC4-VHL, ECACC N-0312703), restoring pVHL function associated with altered drug sensitivity. 

The vector-only line provided a baseline for assessing VHL reinstatement. Pancreatic adenocarcinoma MIA PaCa-

2 and hepatocellular carcinoma Hep G2 lines were also included. All media supplements, sera, glutamine, 

pyruvate, nonessential amino acids, antibiotics, PBS, and insulin were from Life Technologies (Gibco, Invitrogen, 

CA, USA). MTT and MMS were sourced from Sigma (St. Louis, MO, USA). Automated cultivation and seeding 

employed the SelecT platform (TAP Biosystems). Hep G2 (ATCC CCL-8065) and MIA PaCa-2 (ATCC CRL-

1420) originated from ATCC (Manassas, VA, USA). Hep G2 cultures used Eagle’s MEM fortified with 10% 

FBS, 2 mM glutamine, 1 mM pyruvate, and 100 μM nonessential amino acids. MIA PaCa-2 (bearing K-RAS, 

P16, and P53 mutations) were propagated in DMEM containing 10% FBS, 2.5% horse serum, 1% glutamine, and 

1% penicillin-streptomycin. Both RCC4 variants were sustained in DMEM with 10% FBS, 0.01% 200 mM 

glutamine, 0.01% antibiotics, and 0.001% G418 (0.5 mg/mL). Incubation conditions were 37 °C, 5% CO2, 

humidified atmosphere. 

 

Evaluation of cell growth inhibition 

Mitochondrial activity was quantified by MTT reduction as a proxy for cell survival [54, 55]. Tumor cells were 

continuously exposed to compounds for 72 hours. Seeding density was 103 cells per well in 96-well format for 

all lines. Stock solutions were prepared by diluting pure compounds (3 μL) into medium (597 μL). Robotic 

dispensing (Biomek FX, Beckman Coulter) delivered 200 μL to triplicate wells across ten concentration points. 

Positive control: MMS; vehicle control: 0.5% DMSO (kept ≤0.5% to prevent nonspecific effects). Post-incubation 

(72 h, 37 °C/5% CO2), medium was aspirated and replaced with 100 µL MTT (0.5 mg/mL in phenol red-free 

MEM). Following 3-hour dye exposure, formazan was solubilized in 100 µL DMSO, and plates were read at 570 

nm on a VictorTM reader. Differences relative to vehicle were evaluated by one-way ANOVA, with p > 0.05 

denoting lack of statistical significance. 

Results and Discussion 

Docking calculations 

Docking analyses were conducted to evaluate the binding affinity and preferred orientations of the designed 

ligands within the GPER binding pocket. The results indicated that the newly designed compounds were able to 

access additional receptor cavities beyond those identified in earlier studies [20, 21]. Consistent with previous 

findings, GPER molecular recognition was dominated by interactions with key aromatic residues forming a 
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phenylalanine cluster (F206, F208 and F278), along with the polar residue N310. Despite the introduction of 

substantial chemical modifications to the ligand scaffold—including steric bulk, electronic effects and increased 

hydrophobicity—both agonist- and antagonist-like ligands displayed binding conformations comparable to those 

previously reported [20, 21]. 

Ligand 4, containing a meta-nitro–substituted phenyl group, exhibited close proximity to the phenylalanine 

cluster, enabling favorable ionic–π interactions between the electron-withdrawing nitro group and the π-electron 

systems of the aromatic residues. This interaction contributed to a more favorable binding free energy (−8.46 

kcal/mol) compared with ligand 5 (−8.36 kcal/mol), which bears an electron-donating methoxy substituent (Table 

1). In the case of ligand 7, the Boc (di-tert-butyl dicarbonate) group was positioned within 5 Å of residue N310, 

suggesting a potential role in modulating receptor activation. Additionally, ligand 7 adopted a binding orientation 

that closely overlapped with that of ligand 5, sharing a similar set of interactions with residues in the binding 

pocket (Table 1). 

 

Table 1. Binding free energies (−ΔG_binding, kcal/mol) and interacting residues of the G protein-coupled 

estrogen receptor (GPER) with the synthesized ligands as determined by docking analysis. 

Ligand 

ID 

Estimated Binding 

Energy (kcal/mol) 
Primary Residues Involved in Nonbonded Interactions 

4 −8.46 F206, H52, L59, L119, N44, Q54, R122** 

5 −8.36 Q53, Q54, H120, H302*, H307, N310, L59, I279, P303, G58, G306, F278*** 

7 −8.21 E51, F278, G58, H120, H282*, H302*, I279, L59, N310, P303, Q53*, Q54** 

* Residue forming H bond. 

 

It should be emphasized that, during the initial docking-based recognition analysis, the key residues—namely the 

phenylalanine cluster and N310—were not simultaneously engaged in noncovalent interactions with the ligands. 

Nevertheless, it is well established that GPER possesses multiple binding regions composed of residues with 

similar chemical characteristics to those found in the orthosteric site [20]. The ligand conformations generated 

from docking simulations on GPER were subsequently used as starting structures for molecular dynamics 

simulations, followed by binding free-energy estimations using the MMGBSA methodology. Moreover, all 

ligands exhibited favorable physicochemical and toxicological–biological profiles, including absorption, 

distribution, metabolism, excretion and toxicity (ADME-tox), in agreement with Lipinski’s rule-of-five criteria 

for drug-like molecules (Table 2). Toxicological–biological screening indicated the absence of adverse effects 

across all evaluated parameters. 

 

Table 2. Physicochemical and toxicological–biological properties of the ligands evaluated using online 

prediction platforms. HBD = hydrogen bond donor; MW = molecular weight; Mut = mutagenicity; HBA = 

hydrogen bond acceptor; Irri = irritability; Ter = teratogenicity; Rep = reproductive effects. 

L
ig

a
n

d
 I

D
 

M
o
le

cu
la

r
 

W
ei

g
h

t 
(g

/m
o
l)

 

L
o
g
P

 

(L
ip

o
p

h
il

ic
it

y
) 

H
B

D
 

(H
y
d

ro
g
e
n

 

B
o
n

d
 D

o
n

o
rs

) 

H
B

A
 

(H
y
d

ro
g
e
n

 

B
o
n

d
 

A
cc

ep
to

rs
) 

M
u

ta
g
en

ic
it

y
 

T
er

a
to

g
en

ic
it

y
 

Ir
ri

ta
n

cy
 

R
ep

ro
d

u
ct

iv
e 

T
o
x
ic

it
y
 

4 456.45 5.62 2 8 None None None None 

5 441.48 5.71 2 6 None None None None 

7 514.37 5.97 1 7 None None None None 
 

Molecular dynamics simulations 

Assessment of equilibration in membrane-embedded GPER–ligand complexes 

Initial docking analyses indicated that the investigated compounds formed interaction patterns distinct from those 

previously reported, largely as a consequence of steric effects [20, 21]. These interactions involved contacts with 

the aromatic phenylalanine cluster (F206, F208 and F278) as well as the polar residue N310 (data not shown). To 

verify the persistence of these interactions under dynamic conditions and to gain insight into the conformational 

behavior of the receptor–ligand complexes, the docked structures were embedded within a membrane environment 

and subjected to 100 ns molecular dynamics (MD) simulations. Binding free energies were subsequently estimated 
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using the MMGBSA method, allowing the systems to be evaluated under conditions that more closely resemble 

the physiological membrane context compared with static docking approaches. 

Prior to detailed structural and energetic analyses, the equilibration behavior of the membrane-embedded GPER–

ligand systems was carefully examined (Figure 1). Three geometric descriptors were monitored to confirm 

equilibration: the area per lipid of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine (POPC) bilayer, the 

root mean square deviation (RMSD) of heavy atoms, and the radius of gyration (Rg) of GPER relative to its initial 

structure. As shown in Figure 1a, the area per lipid initially displayed elevated values during the first 30 ns of 

simulation but gradually decreased, reaching stable plateaus at approximately 60 ns. At this point, the values 

converged to 61.03 ± 0.26 Å for GPER-4, 61.34 ± 0.30 Å for GPER-5, and 60.76 ± 0.32 Å for GPER-7. 

Analysis of RMSD trajectories revealed that all three GPER–ligand complexes attained structural stability at 

comparable simulation times, around 50 ns, with average RMSD values of 2.6 ± 0.12 Å, 2.2 ± 0.17 Å, and 2.5 ± 

0.11 Å for GPER-4, GPER-5, and GPER-7, respectively (Figure 1b). Consistent with these findings, Rg 

calculations indicated convergence of the systems at approximately 60 ns, yielding values of 26.5 ± 0.1 Å for 

GPER-4, 26.4 ± 0.13 Å for GPER-5, and 26.5 ± 0.12 Å for GPER-7 (Figure 1c). Collectively, these metrics 

confirmed that all systems reached equilibrium by 60 ns, and subsequent analyses—including root mean square 

fluctuation (RMSF) calculations—were therefore conducted using the equilibrated portions of the trajectories. 

RMSF profiles computed over the final 40 ns of the production simulations demonstrated comparable flexibility 

patterns across the three complexes (Figure 1d). In all cases, the loop region encompassing residues 20–50, which 

flanks the ligand-binding cavity, exhibited the greatest conformational mobility. Notably, loop 5 (residues 245–

251) showed pronounced flexibility exclusively in the GPER-7 system, distinguishing it from the other complexes 

(Figure 1d). 

 

  

a) b) 

  
c) d) 

Figure 1. Indicators of dynamic stabilization for membrane-inserted GPER–ligand complexes derived from 

molecular dynamics (MD) trajectories: (a) temporal evolution of lipid surface area, (b) backbone root mean 

square deviation (RMSD), (c) receptor compactness expressed as radius of gyration (Rg), and (d) residue-

wise root mean square fluctuation (RMSF) for GPER-4 (red), GPER-5 (blue), and GPER-7 (black). 

 

Identification of dominant conformational states 

To characterize the structural ensembles sampled by the equilibrated GPER–ligand systems, a clustering 

procedure was applied to the stabilized segments of the MD trajectories for GPER-4, GPER-5, and GPER-7. 
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Using a structural similarity threshold of 2.0 Å, distinct differences in conformational diversity were observed 

among the complexes. The GPER-4 system populated a single conformational state throughout the simulation, 

whereas GPER-5 and GPER-7 exhibited increased heterogeneity, forming three and five conformational clusters, 

respectively. The dominant cluster represented the full trajectory for GPER-4, while accounting for 73% and 56% 

of the sampled conformations for GPER-5 and GPER-7, respectively. The most frequently populated conformers 

extracted from these clusters were subsequently selected as representative structures for detailed analysis of 

ligand–receptor interactions. 

 

Essential dynamics analysis 

The collective motions underlying the conformational behavior of the GPER–ligand complexes were further 

explored using Cartesian principal component analysis (cPCA) (see Methods). Decomposition of atomic 

positional fluctuations resulted in 3375 eigenvectors describing the full motion of the systems; however, only the 

first 15 modes were sufficient to capture the essential dynamics of the simulations. The contributions of these 

dominant modes are illustrated in Figure 2a, with their respective variance percentages shown in Figure 2b. 

Together, these modes accounted for 69.5% of the total motion in GPER-4, 69.4% in GPER-5, and 75.3% in 

GPER-7. 

Visualization of trajectory projections onto the first two principal components revealed that conformational 

sampling for all complexes was largely confined within this reduced subspace. Among the three systems, GPER-

7 displayed the broadest exploration of the PC1–PC2 plane, indicating enhanced conformational plasticity. In 

contrast, GPER-4 occupied a more restricted region, while GPER-5 exhibited intermediate behavior with greater 

extension along PC1 relative to GPER-4. Correspondingly, well-defined and compact conformational basins were 

most evident for GPER-4, whereas the remaining systems showed less sharply separated states. 

A quantitative comparison of overall receptor flexibility was obtained by calculating the trace of the backbone 

covariance matrix derived from atomic displacement fluctuations (Figure 2c). This metric yielded values of 12.71 

nm² for GPER-7, 9.94 nm² for GPER-5, and 9.35 nm² for GPER-4, revealing a progressive increase in 

conformational freedom in the order GPER-7 > GPER-5 > GPER-4. Notably, this hierarchy was consistent with 

the degree of structural heterogeneity identified in the clustering analysis. 

 

  

a) b) 

 

c) 

Figure 2. Essential dynamics of the GPER–ligand systems visualized in reduced conformational space. (a) 

Dominant collective motions extracted from covariance matrix diagonalization for GPER-4 (red), GPER-5 

(blue), and GPER-7 (black). (b) Variance contribution associated with each collective mode shown in panel 
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A. (c) Distribution of conformational sampling projected onto the first two principal components (PC1 and 

PC2) for the three complexes. 

 

Comparison of ligand-induced interaction patterns in GPER 

To investigate how ligand binding reshapes the interaction landscape of GPER, structural analyses were 

performed on representative conformations corresponding to the most frequently populated states identified 

during clustering (Figure 3). Examination of these conformers revealed that each ligand establishes a distinct 

network of contacts within the receptor binding region, although partial overlap between interaction patterns was 

observed. 

Specifically, compounds 7 and 4 displayed a common interaction footprint involving Gln53, Leu59, Arg122, 

Met133, and Leu137, indicating that these residues contribute to a shared binding framework for these ligands. In 

contrast, compound 7 showed a different set of overlapping contacts with compound 5, including Gln53, Leu59, 

Glu275, Arg122, and Gly58. A third interaction subset was identified for compounds 5 and 4, which both engaged 

Gln53, Leu59, Leu119, His120, and Arg122. 

Despite these pairwise similarities, only three residues—Gln53, Leu59, and Arg122—were found to participate 

in ligand binding across all complexes. This limited overlap underscores the adaptability of the GPER binding 

site and demonstrates that modest chemical alterations within the ligand scaffold are sufficient to redirect 

interaction networks. Consequently, the binding mode of each ligand reflects a balance between conserved 

anchoring interactions and ligand-specific contacts that arise from pharmacophore modification. 

 

 

 

b) 

 

c) 

 

a) d) 

Figure 3. Structural comparison of ligand–GPER interactions. (a) Superposition of all compounds within the 

GPER binding pocket highlighting regions of close contact. Interaction networks for the most representative 

conformations of (b) GPER-4, (c) GPER-5, and (d) GPER-7 are shown. These conformations correspond to 
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the most populated clusters obtained from clustering analysis. Hydrogen-bond interactions are indicated by 

green dashed lines. 

 

Comprehensive inspection of the representative GPER–ligand complexes indicated that stabilization of all three 

systems was dominated by hydrophobic contacts within the receptor binding cavity. In particular, residues forming 

the phenylalanine cluster (F206, F208 and F278) were confirmed as major contributors to ligand stabilization, in 

agreement with previous reports [20, 21]. Among the investigated compounds, ligand 4 interacted with F206 and 

F208, whereas ligand 5 established contact with F278; ligand 7 did not engage directly with any residue from this 

aromatic cluster. 

Polar interactions were less prevalent and exhibited ligand-dependent behavior. Only compounds 7 and 4 formed 

hydrogen bonds or salt bridges through their polar functional groups at the GPER binding site. In the GPER-7 

complex, the carboxylate group mediated a hydrogen bond with Gln53 and a salt bridge with Arg122 (Figure 

3b). In contrast, compound 4 was stabilized by two hydrogen bonds, one involving its carboxyl group and His120 

and a second interaction between its nitro substituent and Cys207 (Figure 3c). Notably, this latter interaction has 

previously been associated with stabilization of the receptor in its activated state [20]. 

The absence of a bromine substituent in the present compounds resulted in the loss of polar interactions analogous 

to those observed for G1 and G15 with Asn307 or Asn310 [21]. Instead, Asn307 and Asn310 contributed to the 

stabilization of the GPER-7 and GPER-5 complexes through interactions involving backbone atoms rather than 

side-chain contacts. 

 

Binding free energy evaluation 

To quantify the energetic favorability of ligand binding, absolute binding free energies (ΔG_bind) were calculated 

for the GPER-4, GPER-5, and GPER-7 complexes using the MMGBSA framework (see Methods). When entropic 

contributions were included, all three systems exhibited negative ΔG_bind values, indicating thermodynamically 

favorable complex formation (Table 3). 

Decomposition of the binding free energy revealed that nonpolar interactions (ΔE_nonpolar = ΔE_vdW + 

ΔG_npol,sol) constituted the principal stabilizing contribution across all complexes. In contrast, polar energy 

terms (ΔE_polar = ΔE_ele + ΔG_pol,sol) were energetically unfavorable, opposing the binding process in each 

case. Entropy calculations further indicated a pronounced reduction in conformational freedom upon ligand 

association (Table 3), suggesting that binding was accompanied by an unfavorable entropic penalty that partially 

counterbalanced favorable enthalpic contributions. 

Among the three systems, GPER-4 displayed the most favorable ΔG_bind value, surpassing those obtained for 

GPER-7 and GPER-5. This result implies that the nitro-substituted ligand establishes a more energetically 

optimized interaction network within the GPER binding site compared with the other compounds. 

 

Table 3. Decomposition of binding free energy terms for GPER–ligand complexes (kcal/mol), including polar 

(ΔE_polar = ΔE_ele + ΔG_ele,sol) and nonpolar (ΔE_nonpolar = ΔE_vdW + ΔG_npol,sol) contributions. 

Values represent averages ± standard deviation calculated from 400 snapshots extracted every 100 ps from the 

final 60 ns of MD production trajectories. 
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GPER-4 
−51.66 

(2.9) 

15.72 

(4.2) 

3.50 

(0.10) 

−6.44 

(0.22) 
19.22 −58.10 

−38.88 

(4.0) 

−26.43 

(1.4) 
−12.43 

GPER-5 
−47.30 

(2.78) 

19.15 

(3.0) 

4.70 

(0.45) 

−6.10 

(0.20) 
23.85 −53.40 

−29.55 

(3.2) 

−22.34 

(2.6) 
−7.21 

GPER-7 
−41.73 

(2.5) 

−3.90 

(0.3) 

22.94 

(0.3) 

−5.52 

(0.10) 
19.04 −47.25 

−28.21 

(2.5) 

−24.14 

(1.3) 
−4.07 

 

Antiproliferative activity 

GPER has been recognized as a key mediator in oncogenic signaling, with the majority of published studies 

emphasizing its overexpression and functional relevance in breast cancer. Recent evidence, however, highlights 
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that GPER signaling is highly context-dependent, varying according to tissue-specific expression patterns and the 

nature of its interacting ligands, which may act either as agonists or antagonists. This ligand- and tissue-selective 

behavior has broadened the scope for evaluating novel GPER-targeting compounds in cancer models, moving 

beyond traditional activity assessment strategies [56-58]. 

In addition to breast malignancies, GPER expression has been reported in several other cancer types, suggesting 

its potential as a therapeutic target in renal [14], hepatic [15], and pancreatic cancers [16]. Based on this rationale, 

the antiproliferative potential of the synthesized compounds was examined using a 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) viability assay across a panel of cancer cell lines expressing GPER. The 

selected models included RCC4-VA and RCC4-VHL renal carcinoma cells, MIA PaCa-2 pancreatic cancer cells, 

and Hep G2 hepatocellular carcinoma cells. 

As summarized in Table 4, differential sensitivity to the tested compounds was observed among the evaluated 

cell lines. Notably, MIA PaCa-2 cells exhibited the greatest susceptibility, with all three compounds producing a 

clear concentration-dependent reduction in cell viability. Within this model, compound 7 emerged as the most 

potent antiproliferative agent. This enhanced activity may be associated with the presence of a Boc-protected 

amine on the piperidine moiety of the GPER pharmacophore (Figure 4). 

Importantly, the estrogen receptor expression profile of MIA PaCa-2 cells has been well characterized, and 

therapeutic strategies targeting estrogen receptor signaling are currently employed to inhibit tumor growth in this 

cancer type [59, 60]. These findings further support the relevance of GPER modulation as a complementary 

approach in hormone-related cancer treatment. 

 

 
Figure 4. Antiproliferative effects of compounds 4, 5 and 7 in MIA PaCa-2 cells. Data are presented as the 

mean of three independent experiments; p < 0.05. 

 

Table 4. Half-maximal inhibitory concentration (IC₅₀) values determined for the tested ligands across the 

evaluated cancer cell lines. Values greater than 50 are shown for reference purposes only and are expressed in 

micromolar (µM). 

Ligand ID IC₅₀ RCC4-VA (µM) IC₅₀ RCC4-VHL (µM) IC₅₀ MIA PaCa-2 (µM) IC₅₀ Hep G2 (µM) 

7 24.46 >50 14.78 >50 

4 >50 >50 18.18 >50 

5 39.29 >50 21.15 31.58 

 

The involvement of GPER-mediated signaling was examined in both physiological and pathological contexts, 

with particular attention to its contribution within the tumor microenvironment of renal, hepatic, and pancreatic 

cancers—processes that may be modulated by the synthesized compounds. Notably, growth inhibition in RCC4-

VA renal carcinoma cells was observed only for compounds 7 and 5, and this effect required higher concentrations 

than those effective in MIA PaCa-2 cells (Figure 5). In RCC4-VA cells, compound 4 displayed a non-monotonic, 

non–dose-dependent response, most evident at a concentration of 6.3 µM. This behavior may reflect adaptive 

cellular mechanisms that counteract drug exposure, such as upregulation of efflux transporters involved in drug 

extrusion (e.g., P-glycoprotein (PGP) ATPase) or alternative resistance pathways that diminish cellular 
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responsiveness. A similar trend was detected for compound 7 at the highest tested concentration (25 µM), where 

a slight reduction in efficacy compared with the preceding dose was observed. This type of response corresponds 

to a biphasic pharmacological profile, a phenomenon previously described in other cancer cell systems 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560104/). By contrast, in RCC4-VHL cells, all compounds 

exhibited antiproliferative activity across the tested concentration range (data not shown). This outcome is 

particularly noteworthy given the distinct molecular characteristics underlying these renal cancer models, 

including the deregulation of VHL/HIF signaling pathways and the specific molecular alterations in RCC4-VA 

cells that contribute to the aggressive tumor phenotype associated with Von Hippel–Lindau syndrome [61, 62]. 

In Hep G2 hepatocellular carcinoma cells, antiproliferative activity was detected exclusively for compound 5 

(Figure 6), with effective concentrations comparable to those observed in RCC4-VA cells. This finding may 

indicate the involvement of a signaling axis linking GPER activation to hypoxia-related pathways, potentially 

through HIF-1α and vascular endothelial growth factor (VEGF), as previously reported [63]. Moreover, all 

evaluated cancer models are known to engage molecular mediators associated with hypoxic responses following 

GPER activation [64, 65]. Collectively, these results reinforce the relevance of GPER as a promising 

pharmacological target and support the development of novel anticancer therapeutic strategies aimed at 

modulating its signaling pathway. 

 

 

Figure 5. Inhibitory effects of compounds 4, 5 and 7 on RCC4-VA renal carcinoma cells. Values correspond 

to the mean of three independent experiments (p < 0.05). 

 

 
Figure 6. Antiproliferative response of Hep G2 hepatocellular carcinoma cells treated with compounds 4, 5 

and 7. Data are presented as mean values from three independent experiments (p < 0.05). 
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Conclusion 

Computational strategies, including molecular docking and molecular dynamics simulations, constitute powerful 

bioinformatic approaches for extracting detailed structural insights that elucidate the molecular determinants 

governing ligand–receptor recognition. These methodologies therefore represent valuable assets in the rational 

development of selective therapeutic agents for disease treatment. Within this framework, three novel compounds 

were designed and demonstrated significant inhibitory effects toward GPER in nonconventional cellular assay 

systems. Analysis of the chemical modifications introduced into the GPER pharmacophore enabled the 

identification of critical structural elements—namely, the bromine substituent and the NH moiety of the piperidine 

ring—as key positions amenable to functionalization for enhancing receptor affinity and biological activity. 

Importantly, a strong agreement was observed between the experimental in vitro findings and the computational 

predictions obtained from in silico modeling of GPER–ligand interactions. The data further indicate that GPER 

exhibits notable binding plasticity, accommodating ligands with planar, aromatic frameworks and tolerating 

relatively simple chemical alterations that enhance the stereoelectronic features of the pharmacophore. 

Comparison of the present results with previously reported structural analyses reinforces the conclusion that 

GPER can interact effectively with chemically diverse scaffolds, particularly those differing by minimal 

modifications of their core pharmacophoric elements. Despite these encouraging findings, further experimental 

validation—such as direct binding assays and intracellular Ca²⁺ mobilization studies—will be essential to 

substantiate the proposed interaction mechanisms. Overall, the strategic application of rational in silico 

methodologies holds considerable promise for identifying new candidate molecules, thereby expanding the 

repertoire of potential GPER-targeted agents for cancer therapy. 

Acknowledgments: None 

Conflict of Interest: None 

Financial Support: None 

Ethics Statement: None 

References 

1. Allred, D.C. Issues and updates: Evaluating estrogen receptor-α, progesterone receptor, and HER2 in breast 

cancer. Mod. Pathol. 2010, 23, S52–S59.  

2. DeRoo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Investig. 2006, 116, 561–570.  

3. Prossnitz, E.R.; Arterburn, J.B.; Sklar, L.A. GPR30: A G protein-coupled receptor for estrogen. Mol. Cell. 

Endocrinol. 2007, 265, 138–142.  

4. Olde, B.; Leeb-Lundberg, L.M.F. GPR30/GPER1: Searching for a role in estrogen physiology. Trends 

Endocrinol. Metab. 2009, 20, 409–416.  

5. Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Signalling: Seven-transmembrane receptors. Nat. Rev. Mol. 

Cell Biol. 2002, 3, 639–650.  

6. Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer 2007, 7, 79–94.  

7. Revankar, C.M.; Cimino, D.F.; Sklar, L.A.; Arterburn, J.B.; Prossnitz, E.R. A Transmembrane Intracellular 

Estrogen Receptor Mediates Rapid Cell Signaling. Science 2005, 307, 1625–1630.  

8. Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an Estrogen Membrane Receptor Coupled to a G 

Protein in Human Breast Cancer Cells. Endocrinology 2005, 146, 624–632.  

9. Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R. Estrogen-Induced Activation of Erk-1 and Erk-2 

Requires the G Protein-Coupled Receptor Homolog, GPR30, and Occurs via Trans-Activation of the 

Epidermal Growth Factor Receptor through Release of HB-EGF. Mol. Endocrinol. 2000, 14, 1649–1660.  

10. Bologa, C.G.; Revankar, C.M.; Young, S.M.; Edwards, B.S.; Arterburn, J.B.; Kiselyov, A.S.; Parker, M.A.; 

Tkachenko, S.E.; Savchuck, N.P.; Sklar, L.A.; et al. Virtual and biomolecular screening converge on a 

selective agonist for GPR30. Nat. Chem. Biol. 2006, 2, 207–212. 

11. Burai, R.; Ramesh, C.; Shorty, M.; Curpan, R.; Bologa, C.G.; Sklar, L.A.; Oprea, T.I.; Prossnitz, E.R.; 

Arterburn, J.B. Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and 

related tetrahydroquinoline analogs. Org. Biomol. Chem. 2010, 8, 2252–2259.  



Wilson et al., Computationally Guided Optimization of a Tetrahydroquinoline Scaffold for Targeting GPER in Cancer Cells 

 

 

374 

12. Dennis, M.K.; Burai, R.; Ramesh, C.; Petrie, W.K.; Alcon, S.N.; Nayak, T.K.; Bologa, C.G.; Leitao, A.; 

Brailoiu, E.; Deliu, E.; et al. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol. 2009, 5, 421–427.  

13. Dennis, M.K.; Field, A.S.; Burai, R.; Ramesh, C.; Petrie, W.K.; Bologa, C.G.; Oprea, T.I.; Yamaguchi, Y.; 

Hayashi, S.-I.; Sklar, L.A.; et al. Identification of a GPER/GPR30 antagonist with improved estrogen 

receptor counterselectivity. J. Steroid Biochem. Mol. Biol. 2011, 127, 358–366.  

14. Guan, B.-Z.; Yan, R.-L.; Huang, J.-W.; Rui-Ling, Y.; Zhong, Y.-X.; Chen, Y.; Liu, F.-N.; Hu, B.; Huang, 

S.-B.; Yin, L.-H. Activation of G protein coupled estrogen receptor (GPER) promotes the migration of renal 

cell carcinoma via the PI3K/AKT/MMP-9 signals. Cell Adhes. Migr. 2018, 12, 109–117. 

15. Chaturantabut, S.; Shwartz, A.; Evason, K.J.; Cox, A.G.; Labella, K.; Schepers, A.G.; Yang, S.; Acuña, M.; 

Houvras, Y.; Mancio-Silva, L.; et al. Estrogen Activation of G-Protein–Coupled Estrogen Receptor 1 

Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and 

Proliferation of Human Hepatocytes. Gastroenterology 2019, 156, 1788–1804. 

16. Cortes, E.; Sarper, M.; Robinson, B.; Lachowski, D.; Chronopoulos, A.; Thorpe, S.D.; Lee, D.A.; Hernández, 

A.E.D.R. GPER is a mechanoregulator of pancreatic stellate cells and the tumor microenvironment. EMBO 

Rep. 2019, 20, 46556. 

17. Wang, C.; Lv, X.; Jiang, C.; Davis, J.S. The putative G-protein coupled estrogen receptor agonist G-1 

suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. Am. J. Transl. 

Res. 2012, 4, 390–402.  

18. Wang, C.; Lv, X.Y.; He, C.; Hua, G.; Tsai, M.-Y.; Davis, J.S. The G-protein-coupled estrogen receptor 

agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization. Cell Death 

Dis. 2013, 4, 1–11.  

19. Rosano, C.; Ponassi, M.; Santolla, M.F.; Pisano, A.; Felli, L.; Vivacqua, A.; Maggiolini, M.; Lappano, R. 

Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands. AAPS 

J. 2015, 18, 41–46.  

20. Méndez-Luna, D.; Martínez-Archundia, M.; Maroun, R.C.; Ceballos-Reyes, G.; Fragoso-Vázquez, M.; 

González-Juárez, D.; Correa-Basurto, J. Deciphering the GPER/GPR30-agonist and antagonists interactions 

using molecular modeling studies, molecular dynamics, and docking simulations. J. Biomol. Struct. 

Dyn. 2015, 33, 2161–2172.  

21. Méndez-Luna, D.; Bello, M.; Correa-Basurto, J. Understanding the molecular basis of agonist/antagonist 

mechanism of GPER1/GPR30 through structural and energetic analyses. J. Steroid Biochem. Mol. 

Biol. 2016, 158, 104–116.  

22. Zacarias-Lara, O.J.; Mendez-Luna, D.; Martinez-Ruiz, G.; Garcia-Sanchez, J.R.; Fragoso-Vazquez, M.J.; 

Bello, M.; Becerra-Martinez, E.; Garcia-Vazquez, J.B.; Correa-Basurto, J. Synthesis and In Vitro Evaluation 

of Tetrahydroquinoline Derivatives as Antiproliferative Compounds of Breast Cancer via Targeting the 

GPER. Anti Cancer Agents Med. Chem. 2019, 19, 760–771.  

23. Martínez-Muñoz, A.; Prestegui-Martel, B.; Mendez-Luna, D.; Fragoso-Vazquez, M.J.; García-Sánchez, 

J.R.; Bello, M.; Martinez-Archundia, M.; Chávez-Blanco, A.D.; Duenas-Gonzalez, A.; Mendoza-Lujambio, 

I.; et al. Selection of a GPER1 Ligand via Ligand-based Virtual Screening Coupled to Molecular Dynamics 

Simulations and Its Anti-proliferative Effects on Breast Cancer Cells. Anti Cancer Agents Med. 

Chem. 2019, 18, 1629–1638. 

24. ChemBioDraw Ultra 12.0. Available 

online: http://www.cambridgesoft.com/software/overview.aspx (accessed on 12 November 2020). 

25. Denningtion, R.; Roy, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, USA, 

2009.  

26. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; 

Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, 

CT, USA, 2016. 

27. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A. AutoDock4 

and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 

2785–2791.  

28. DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific: San Carlos, CA, USA, 2002; 

Available online: http://www.pymol.org (accessed on 12 November 2020). 

29. Molinspiration Cheminformatics, Bratislava, Slovak Republic. Available 

online: http://www.molinspiration.com (accessed on 12 November 2020). 



Wilson et al., Computationally Guided Optimization of a Tetrahydroquinoline Scaffold for Targeting GPER in Cancer Cells 

 

 

375 

30. Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry 

Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. 

31. Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: Orientations of Proteins in Membranes 

database. Bioinformatics 2006, 22, 623–625.  

32. Jo, S.; Kim, T.; Im, W. Automated Builder and Database of Protein/Membrane Complexes for Molecular 

Dynamics Simulations. PLoS ONE 2007, 2, e880.  

33. Jo, S.; Lim, J.B.; Klauda, J.B.; Im, W. CHARMM-GUI Membrane Builder for Mixed Bilayers and Its 

Application to Yeast Membranes. Biophys. J. 2009, 97, 50–58.  

34. Woolf, T.B.; Roux, B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular 

dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins 1996, 24, 92–114.  

35. Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, 

C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 

1668–1688.  

36. Skjevik, Å.A.; Madej, B.D.; Walker, R.C.; Eigen, K.T. LIPID11: A Modular Framework for Lipid 

Simulations Using Amber. J. Phys. Chem. B 2012, 116, 11124–11136.  

37. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general 

amber force field. J. Comput. Chem. 2004, 25, 1157–1174.  

38. Darden, T.A.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large 

systems. J. Chem. Phys. 1993, 98, 10089–10092.  

39. Van Gunsteren, W.; Berendsen, H. Algorithms for macromolecular dynamics and constraint dynamics. Mol. 

Phys. 1977, 34, 1311–1327.  

40. Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory 

analysis. J. Mol. Model. 2001, 7, 306–317.  

41. Amadei, A.; Linssen, A.B.M.; Berendsen, H.J.C. Essential dynamics of proteins. Proteins Struct. Funct. 

Bioinform. 1993, 17, 412–425.  

42. Berendsen, H.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A message-passing parallel molecular 

dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56.  

43. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, 

flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.  

44. Gohlke, H.; Case, D.A. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein 

complex Ras-Raf. J. Comput. Chem. 2004, 25, 238–250.  

45. Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, 

W.; et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics 

and Continuum Models. Accounts Chem. Res. 2000, 33, 889–897.  

46. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 

1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. 

Inf. Model. 2011, 51, 69–82.  

47. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson 

Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy 

of ranking poses generated from docking. J. Comput. Chem. 2011, 32, 866–877.  

48. Xu, L.; Sun, H.; Li, Y.; Wang, J.; Hou, T. Assessing the Performance of MM/PBSA and MM/GBSA 

Methods. 3. The Impact of Force Fields and Ligand Charge Models. J. Phys. Chem. B 2013, 117, 8408–

8421.  

49. Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 

4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using 

PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719–16729. 

50. Hou, T.; Li, N.; Li, Y.; Wang, W. Characterization of Domain–Peptide Interaction Interface: Prediction of 

SH3 Domain-Mediated Protein–Protein Interaction Network in Yeast by Generic Structure-Based Models. J. 

Proteome Res. 2012, 11, 2982–2995. 

51. Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the performance of 

MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant 

MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035–22045.  

52. Liu, L.; Zhang, Y.; Wang, Y. Phosphine-free Palladium acetate catalyzed Suzuki reaction in water. J. Org. 

Chem. 2005, 70, 6122–6125.  



Wilson et al., Computationally Guided Optimization of a Tetrahydroquinoline Scaffold for Targeting GPER in Cancer Cells 

 

 

376 

53. Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed 

reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979, 20, 3437–3440.  

54. Verhulst, C.; Coiffard, C.; Coiffard, L.J.; Rivalland, P.; De Roeck-Holtzhauer, Y. In vitro correlation 

between two colorimetric assays and the pyruvic acid consumption by fibroblasts cultured to determine the 

sodium laurylsulfate cytotoxicity. J. Pharmacol. Toxicol. Methods 1998, 39, 143–146.  

55. Liu, Y.; Nair, M.G. An Efficient and Economical MTT Assay for Determining the Antioxidant Activity of 

Plant Natural Product Extracts and Pure Compounds. J. Nat. Prod. 2010, 73, 1193–1195.  

56. Moreno-Ulloa, A.; Mendez-Luna, D.; Beltrán-Partida, E.; Castillo, C.; Guevara, G.; Ramírez-Sánchez, I.; 

Correa-Basurto, J.; Ceballos, G.; Villarreal, F. The effects of (-)-epicatechin on endothelial cells involve the 

G protein-coupled estrogen receptor (GPER). Pharmacol. Res. 2015, 100, 309–320.  

57. Qian, H.; Xuan, J.; Liu, Y.; Shi, G. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive 

System Tumors. J. Immunol. Res. 2016, 2016, 1–6.  

58. Jacenik, D.; Cygankiewicz, A.I.; Krajewska, W.M. The G protein-coupled estrogen receptor as a modulator 

of neoplastic transformation. Mol. Cell. Endocrinol. 2016, 429, 10–18.  

59. Abe, M.; Yamashita, J.; Ogawa, M. Medroxyprogesterone acetate inhibits human pancreatic carcinoma cell 

growth by inducing apoptosis in association with Bcl-2 phosphorylation. Cancer 2000, 88, 2000–2009.  

60. Guo, J.-M.; Xiao, B.-X.; Dai, D.-J.; Liu, Q.; Ma, H.-H. Effects of daidzein on estrogen-receptor-positive and 

negative pancreatic cancer cellsin vitro. World J. Gastroenterol. 2004, 10, 860–863.  

61. Lonser, R.R.; Glenn, G.M.; Walther, M.; Chew, E.Y.; Libutti, S.K.; Linehan, W.M.; Oldfield, E.H. von 

Hippel-Lindau disease. Lancet 2003, 361, 2059–2067.  

62. Cautain, B.; De Pedro, N.; De Escalona, M.M.; Tormo, J.R.; Genilloud, O.; Vicente, F. HCS strategy 

targeting dysregulation of the VHL/HIF pathway for drug discovery. Adv. Biosci. Biotechnol. 2013, 4, 398–

405.  

63. Rigiracciolo, D.C.; Scarpelli, A.; Lappano, R.; Pisano, A.; Santolla, M.F.; De Marco, P.; Cirillo, F.; 

Cappello, A.R.; Dolce, V.; Belfiore, A.; et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer 

cells. Oncotarget 2015, 6, 34158–34177.  

64. De Francesco, E.M.; Lappano, R.; Santolla, M.F.; Marsico, S.; Caruso, A.; Maggiolini, M. HIF-1α/GPER 

signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts 

(CAFs). Breast Cancer Res. 2013, 15, 1–18.  

65. De Francesco, E.M.; Pellegrino, M.; Santolla, M.F.; Lappano, R.; Ricchio, E.; Abonante, S.; Maggiolini, M. 

GPER Mediates Activation of HIF1/VEGF Signaling by Estrogens. Cancer Res. 2014, 74, 4053–4064.  

 


