

Strategies Rooted in Quantum Mechanics for Drug Discovery: Keeping Pace with Novel Hurdles in Pharmaceutical Design

Jonas Eriksson^{1*}, Karin Holm¹

¹Department of Medicinal Chemistry, School of Pharmacy, Lund University, Lund, Sweden.

*E-mail: jonas.eriksson@outlook.com

Received: 08 November 2022; Revised: 29 January 2023; Accepted: 01 February 2023

ABSTRACT

The exploration of vastly enlarged chemical spaces, consisting of practical libraries with billions of achievable synthetic compounds, presents thrilling possibilities for drug development while also testing the limits of computational tools in selecting the top prospects. This particularly impacts quantum mechanics (QM) techniques, which offer highly precise chemical insights but are confined to smaller molecular scales. Central to numerous research initiatives is the balance between retaining precision and minimizing computational expense, as seen in advanced algorithms and novel computing methodologies. Developing customized QM-derived physics-based force fields, along with integrating QM approaches with machine learning—bolstered by high-performance computing infrastructure—will greatly expand the utility of these methods in drug research. The hurdle is significant, yet extraordinary breakthroughs are certain, marking the beginning of a groundbreaking period in the discipline.

Keywords: Strategies, Quantum mechanics, Pharmaceutical, Chemical spaces

How to Cite This Article: Eriksson J, Holm K. Strategies Rooted in Quantum Mechanics for Drug Discovery: Keeping Pace with Novel Hurdles in Pharmaceutical Design. *Pharm Sci Drug Des.* 2023;3:245-55. <https://doi.org/10.51847/JHGY5h43T8>

Introduction

Methods based on electronic structure theory offer a powerful and flexible framework for investigating chemical reactivity within biological macromolecular systems. The quantum mechanical (QM) cluster approach and the hybrid multiscale quantum mechanics/molecular mechanics (QM/MM) methodology have revealed the key elements responsible for the remarkable catalytic power of enzymes [1-4]. In addition to elucidating reaction pathways, these techniques have been applied to diverse challenges, including the rational design of covalent inhibitors, the enzyme-mediated or photoinduced activation of prodrugs, and the directed modification of enzymatic function [5, 6].

Over recent decades, QM methodologies have increasingly influenced the field of drug discovery. Initially constrained by high computational demands to the study of small molecules, their broader adoption in structure-based drug design has been facilitated by innovative algorithmic developments—including integration with machine learning (ML)—as well as substantial improvements in hardware capabilities. For an in-depth overview of progress in refined QM/MM protocols and the rise of quantum machine learning (QML), the reader is referred to the review by Manathunga *et al.* [7]. A recent comparative evaluation of the strengths of QM/MM approaches versus conventional computational drug design tools is also available [8].

The present contribution seeks to highlight key developments from the last few years in the use of QM-based techniques for characterizing biologically active compounds, guiding structure-based optimization from initial hits to lead candidates, and pinpointing structural determinants of bioactivity (**Figure 1**).

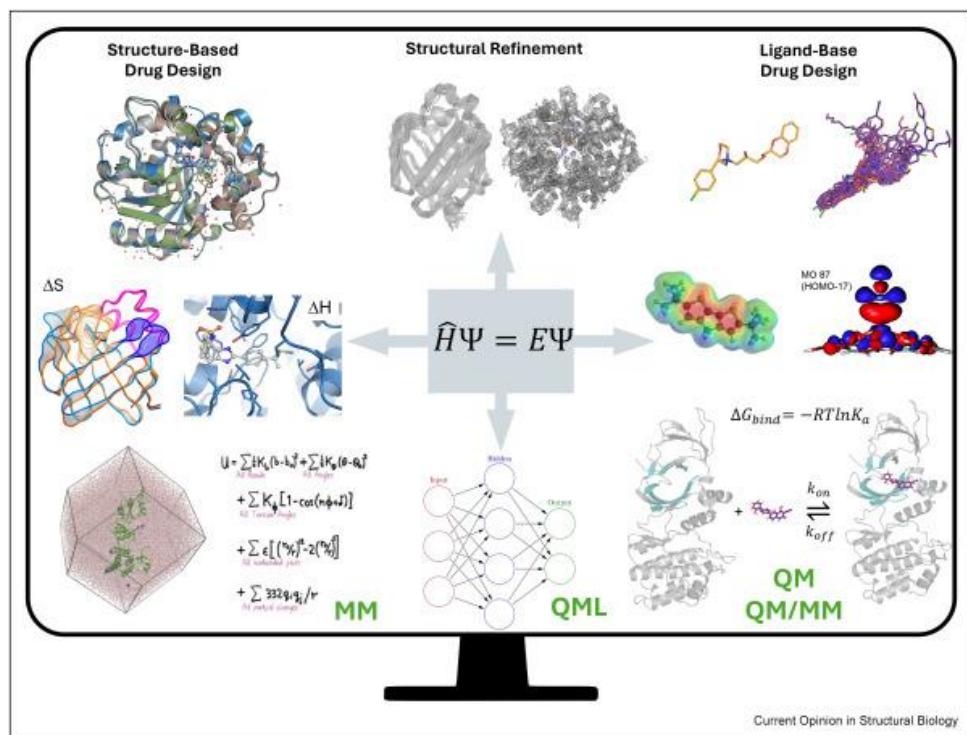


Figure 1. Illustration depicting the growing integration of QM-based approaches into computational drug design, driven by advancements in semiempirical QM and hybrid QM/MM methodologies, specialized QM-derived physics-based force fields, and the synergy between QM and machine learning techniques.

Conformational sampling of ligands

Evaluating the torsional preferences of small molecules and pinpointing low-energy rotamers play a crucial role in defining the physicochemical characteristics of drug candidates and explaining their biological effects [9]. Similarly, producing realistic ensembles of accessible conformers helps in recognizing the bioactive conformation, constructing pharmacophore hypotheses, and supporting the selection of reference structures for 3D ligand-based virtual screening [10, 11]. Moreover, examining conformational distributions across different solvent conditions is essential for forecasting the solubility and membrane permeability of “chameleonic” molecules that fall outside the traditional rule-of-5 boundaries [12].

Although significant progress has been made in refining molecular mechanics (MM) force fields, their precision remains hampered by limitations in the torsional potential functional form and incomplete parametrization [13]. These shortcomings restrict the reliability of MM approaches for thoroughly mapping the conformational landscapes of diverse compounds, particularly those featuring unconventional chemical scaffolds [14, 15]. Nonetheless, the pursuit of comprehensive, high-accuracy force fields remains a vibrant research field, exemplified by the XFF force field, which was parameterized using an extensive collection of functional groups and corresponding QM-derived energies [16].

In this landscape, QM-based techniques stand out as a dependable alternative for accurately determining conformational preferences in organic and bioorganic systems. This is demonstrated by the thorough studies conducted by Rulíšek and colleagues on di- and tripeptides, where DFT calculations combined with implicit solvation models were employed to elucidate preferences for protein secondary structure motifs [17, 18]. Another notable application involves the use of QM/MM simulations to investigate atropisomerism in PI3K δ inhibitors [19].

A major breakthrough has come from the creation of efficient, purpose-built software tools for ligand conformational exploration. A prominent example is the freely available CREST (Conformer-Rotamer Ensemble Sampling Tool) program, which automates the generation of conformers for drug-like molecules using the semiempirical extended tight-binding (xTB) method, while also accounting for configurational entropy and solvation contributions [20, 21]. Boz and Stein applied this tool to study how ligand flexibility affects binding to synthetic macrocyclic receptors [22]. The binding free energies derived from CREST-based QM sampling yielded an average error of approximately 3 kcal/mol compared to experimental values. This performance was further

validated against higher-level meta-GGA PW6B95 calculations with the COSMO-RS solvation model on TPSS-D3(COSMO)-optimized structures, which achieved an error of about 2 kcal/mol.

Efforts have also focused on leveraging machine learning models trained on high-quality QM reference data. For instance, Liu *et al.* [23] introduced Auto3D, a Python tool designed to generate stereoisomer-specific conformational ensembles for small molecules. Auto3D relies on the ANI-2xt neural network potential, trained to reproduce DFT-level energies and forces using a dataset enriched with tautomers. In a similar vein, TorsionNet represents a dedicated deep learning approach for rapid and precise prediction of dihedral energy profiles in small molecules [24]. Trained on a large dataset of 1.2 million DFT torsional scan points from diverse chemical fragments, the model achieves a root-mean-square deviation of 1.3 kcal/mol relative to DFT benchmarks. TorsionNet offers an efficient way to navigate complex potential energy surfaces of flexible compounds, though its accuracy may diminish for structures containing chemical features underrepresented in the training data.

A different hybrid approach is embodied in the QD π model [25], which integrates a rapid third-order density-functional tight-binding method (DFTB3/3OB) with a deep learning correction trained against ω B97X/6-31G* reference calculations. This framework not only provides a reliable mapping of conformational energy landscapes but also consistently handles variations in charge, protonation, and spin states.

Lastly, Das *et al.* [26] described an ab initio pipeline for predicting collisional cross sections (CCS) from ion mobility-mass spectrometry experiments on small molecules. The protocol progressively refines candidate structures through a combination of MM, machine learning potentials, clustering, and QM optimizations. In a follow-up study [27], the same group benchmarked conformational ensembles produced by Auto3D, CREST, and traditional force field methods (Balloon and ETKDG). Auto3D excelled in locating global energy minima, whereas CREST demonstrated superior accuracy in reproducing experimental CCS values.

Refinement of experimental binding poses

Accurately determining the ligand's orientation and conformation within the binding site is essential for the effectiveness of medicinal chemistry efforts. Quantum mechanical (QM) and hybrid QM/MM approaches are particularly effective for optimizing the ligand's geometry under the influence of the protein's electrostatic environment, thereby enhancing the precision of intramolecular parameters and protein–ligand intermolecular contacts. To keep the discussion concise, we highlight two representative cases: the QM/MM-based identification of the correct binding mode for the O-arylcarbamate inhibitor URB524 in fatty acid amide hydrolase, which successfully distinguished between two plausible poses [28], and the detailed mechanistic insight into covalent adduct formation between dipeptidyl nitriles and cruzain [29].

QM and QM/MM techniques have emerged as robust tools for supporting structural refinement by comparing computed physicochemical properties with experimental data, thereby allowing reliable differentiation between authentic binding poses and incorrect decoys. This strategy has been applied in several recent investigations.

Standard crystallographic refinement of protein–ligand complexes relies on stereochemical restraints and empirical energy terms to ensure proper ligand fitting within the electron density map. Borbulevych *et al.* [30] incorporated a QM/MM framework to improve the refinement of a carefully curated collection of structures from the community structure–activity resource database, with particular emphasis on correctly assigning ligand tautomer and protomer states. More recently, the Quantum Mechanical Restraints (QMR) protocol has been introduced to directly optimize ligand geometry during macromolecular crystallographic refinement [31]. In this method, the ligand's structure is refined in the context of the binding pocket, accounting for interactions with nearby amino acid residues and solvent molecules to identify local energy minima. Application of QMR to over 1700 protein–ligand complexes demonstrated that these quantum-derived restraints produce ligand geometries that better conform to the surrounding protein environment than traditional empirical restraints, especially in providing reliable torsional constraints for highly flexible ligands.

The automated fragmentation QM/MM (AF-QM/MM) approach has proven to be a powerful and efficient tool for predicting protein–ligand binding structures using NMR-derived data [32]. This method automatically partitions the ligand and/or the binding pocket into capped fragments, enabling DFT-level calculations of NMR chemical shifts that incorporate electrostatic polarization from the surrounding solvent. The resulting ligand-induced perturbations in ^1H chemical shifts are then integrated with docking scores to improve pose ranking. Building on this, AF-QM/MM has facilitated the development of the empirical HECSP scoring function, which offers a rapid and precise prediction of proton chemical shift changes in the protein upon ligand binding [33]. The methodology has recently been extended to ligands in membrane proteins, as demonstrated by Zhang *et al.* [34],

who examined how local environmental factors—such as inter-protomer contacts, phospholipid composition, and solvation—affect the ¹⁵N and ¹³C chemical shifts of retinal in the light-driven sodium-pumping rhodopsin 2. Conversely, direct comparison of experimental NMR chemical shifts with those calculated via QM/MM from crystal structures has revealed inconsistencies, particularly for ligand protons engaged in hydrogen-bonding networks. These differences underscore the limitations of relying on a static single conformation to represent the dynamic solution-state behavior of protein–ligand complexes. In this context, Platzer *et al.* have illustrated that QM/MM molecular dynamics simulations can generate structural ensembles that, when used to refine the starting X-ray co-crystal structure, yield significantly improved agreement with observed ligand chemical shifts [35].

Prediction of binding affinity

One of the most significant hurdles in drug discovery remains the precise computation of the binding free energy between a ligand and its biological target. Given that binding affinity serves as a fundamental pillar in structure-based drug design, there is ongoing enthusiasm for creating reliable and precise physics-based approaches suitable for pharmaceutical applications. Various quantum mechanical (QM) techniques have been utilized, spanning from semiempirical QM, through density functional theory (DFT), up to rigorous coupled-cluster methods [36]. Cavasotto and Aucar [37] demonstrated that a QM-derived scoring function integrating PM7-based ligand–protein interactions with adjustments for solvation and entropy terms substantially outperformed conventional docking in virtual high-throughput screening across 10 diverse targets. More recently, Pecina *et al.* introduced SQM2.20 [38], an advanced semiempirical QM scoring function building on the earlier SQM/COSMO framework [39]. This scoring metric incorporates gas-phase interaction energies computed at the PM6-D3H4X level, solvation free energy changes upon complexation, ligand conformational contributions, proton transfer free energies between ligand and buffer, and the entropic penalty from loss of ligand flexibility upon binding. Evaluations are performed on a truncated system of approximately 2000 atoms, including all residues within 10 Å of superimposed ligands for each protein, with typical computation times of about 20 minutes per protein–ligand complex.

Alternative approaches have emerged within the linear response approximation framework. Leveraging the “divide-and-conquer” fragment molecular orbital (FMO) method, SophosQM [40] estimates ligand–target interactions by summing pairwise energies between the ligand and protein fragments, while non-enthalpic terms are approximated via the octanol/water partition coefficient (logP). Binding affinity is then modeled through multilinear regression incorporating interaction energy and logP, with coefficients calibrated against experimental affinities for congeneric series. This assumes conserved binding modes without major pocket rearrangements. A similar linear combination of FMO-derived interaction and ligand deformation energies with solvation terms forms the basis of FMOscore, successfully applied in lead optimization for Src homology-2-containing protein tyrosine phosphatase 2 [41]. The QMH-L method [42] uses a single MM-preoptimized target–ligand complex (including bridging water molecules) to estimate binding free energy by combining QM fragment interaction energies with a ligand molecular size descriptor as a proxy for entropy. Applications to protein complexes with small molecules and peptides demonstrate a favorable balance of accuracy, scope, and computational demand. QM/MM methodologies can also refine binding free energies obtained from classical simulations via the “indirect” correction approach, applying QM/MM energy adjustments selectively at key thermodynamic endpoints. This avoids the high cost of full QM/MM free energy perturbations while addressing classical force field shortcomings, assuming adequate configurational sampling overlap between MM and QM/MM descriptions. A recent investigation explored force-matching techniques for predicting binding free energies of several narcotics in the SAMPL blind challenge [43].

The high computational demands of QM and QM/MM have driven exploration of complementary strategies, including (i) specialized force fields and (ii) machine learning models for affinity prediction.

The ARROW force field [44] exemplifies the first category, designed to overcome limitations in conventional force fields regarding electrostatics, exchange repulsion, many-body effects, and parameter transferability. ARROW employs multipolar electrostatics and anisotropic polarization, with all parameters derived solely from high-level QM references—such as MP2/aug-cc-pVQZ for monomers and MP2/complete-basis-set extrapolations for amino acid–fragment and water dimers. Nonbonded terms include multipolar electrostatics and exchange-repulsion, spherical dispersion (C₆/C₈), and induced dipole many-body polarization. An updated variant incorporates short-range neural network corrections to intermolecular energies [45].

Another force field enhancement strategy involves the Minimal Basis Iterative Stockholder approach, as implemented by González *et al.* [46] and Macaya *et al.* [47], which derives atomic charges and Lennard-Jones parameters from the polarized electron density of the ligand across multiple bound and unbound configurations. Rizzi *et al.* [48] developed targeted free energy perturbation to bridge inexpensive MM reference potentials to high-level QM targets. A neural network learns a mapping to improve phase-space overlap between distributions, using sparse QM energy and gradient evaluations. Application to 22 ligands yielded excellent agreement with reference benchmarks.

In QM-informed machine learning, Isert *et al.* [49] employed critical points (CPs) of electron density as descriptors of protein–ligand interactions. Models were trained on GFN2-xTB CPs combined with a linearized Poisson–Boltzmann solvation model. Predictive performance was moderate compared to established benchmarks, possibly limited by the semiempirical QM level, CP representation, or omission of ligand strain and entropic effects.

Beyond equilibrium binding affinity, predicting ligand dissociation rate constants (k_{off})—and thus residence time—has gained attention, as it critically influences drug efficacy [50]. Ahmad *et al.* [51] reviewed advances in simulation methods for k_{off} , highlighting massively parallel DFT-QM/MM with machine learning enhancements to capture electronic polarizability and charge transfer in unbinding pathways. Here, we focus on QMrebind by Ojha *et al.* [52], integrated into the SEEKR2 framework for kinetics estimation via multistate MD simulations. QMrebind refits ligand partial charges in the bound state using QM calculations to generate system-specific force fields. Improved parameters enhanced accuracy for host–guest systems and Hsp90–inhibitor complexes.

Molecular determinants of bioactivity

Elucidating the structural and chemical attributes that govern a ligand's bioactivity profile—encompassing both pharmacodynamics and pharmacokinetics—is crucial for guiding the rational development of drug candidates. Quantum mechanical (QM) approaches enable the detailed investigation of specific non-covalent interactions that classical molecular mechanics (MM) force fields struggle to describe accurately, including halogen bonding [53, 54], polarized CH/π, CH/n, and XH/π contacts [55], as well as amide–π or alkene–π stacking in peptides [56, 57]. The shortcomings of MM descriptions are particularly evident in coordination to metal ions [58]. Furthermore, QM-computed reactivity indices for covalent inhibitors have proven valuable in structure–activity relationship analyses [59].

Additional work has focused on overcoming limitations in traditional molecular descriptors, thereby enhancing similarity-based, pharmacophore-driven, and docking-guided virtual screenings [60]. For example, in a similarity search for analogues of remdesivir targeting the SARS-CoV-2 RNA-dependent RNA polymerase, COSMO-RS σ-profiles—generated from QM(B3LYP/DNP)/MM-optimized structures—facilitated effective compound prioritization [61]. In a recent virtual screening effort against soluble epoxide hydrolase, 3D hydrophobic descriptors derived from QM continuum solvation models significantly improved the ranking of top docking hits [62, 63]. QM fragment molecular orbital (FMO) analyses have also identified key interaction hotspots at protein–protein interfaces, providing insights for designing modulators of such complexes [64].

QM cluster calculations at the GFN2-xTB level have been employed to evaluate bioisosteric substitutions, offering a means to fine-tune ligand properties related to potency, bioavailability, and metabolic stability [65]. In a related application, COSMO-RS-derived QM descriptors guided bioisosteric modifications to enhance passive permeability in a series of protein arginine methyltransferase 5 inhibitors [66]. Notably, these studies identified hydrogen-bond acceptor strength as a critical factor influencing membrane transport.

While machine learning (ML) holds great promise across drug design, progress is hindered by the scarcity of large, high-quality curated datasets. To address this, the openly available Quantum-Mechanical Properties of Drug-like Molecules (Q-Mugs) dataset [67] was created, containing GFN2-xTB QM properties for over 665,000 compounds sourced from ChEMBL. Similarly, Merck & Co. released QM9-extended [68], featuring 153,716 drug-relevant molecules with B3LYP/6-31G(2df,p) properties tailored for ADME predictions. Isert *et al.* [69] assembled an internal dataset to train ML models for octanol/water partition coefficient prediction, where the message-passing neural network Chemprop [70] achieved the lowest mean absolute error of 0.34 log units.

Conclusion

High-throughput experimental screening remains the primary method for discovering new small molecules capable of modulating target biology [71]. The rapid expansion of explorable chemical space—now encompassing billions of synthesizable compounds—offers tremendous potential to uncover hits with innovative scaffolds, reduced bias toward naturally occurring structures, and superior complementarity to target binding pockets [72]. Yet, this vast scale also strains the ability of computational tools to effectively rank and select optimal candidates without introducing systematic biases in library evaluation [73].

In this landscape, the future impact of QM-based methods in drug design will hinge on parallel advances in algorithms and computing infrastructure. Three prominent trends are evident: (i) the creation of precise yet efficient semiempirical techniques alongside refined multiscale QM/MM protocols, (ii) the design of specialized QM-informed physics-based force fields capable of faithfully capturing intricate intermolecular networks, and (iii) the development of QM-enhanced machine learning frameworks. On the hardware front, emerging supercomputing platforms [74, 75] and, in particular, quantum computing technologies [76, 77]—despite needing substantial code adaptation—promise transformative gains in quantum chemical simulations. Collectively, the recent surge in methodological innovations, combined with powerful new computational resources, points to a dynamic and promising transformation in the role of quantum chemistry within drug discovery.

Acknowledgments: None

Conflict of Interest: None

Financial Support: This work was supported by the Spanish Ministerio de Ciencia e Innovación [grants PID2020-117646RB-I00 and PID2022-142623OA-I00, MICIN/AEI/10.13039/501100011033; Maria de Maetzu (grant CEX2021-001202-M), and Agència de Gestió d'Ajuts Universitaris i de Recerca [grant 2021SGR00671]

Ethics Statement: None

References

1. Salahub DR: Multiscale molecular modelling: from electronic structure to dynamics of nanosystems and beyond. *Phys Chem Chem Phys* 2022, 24:9051–9081, <https://doi.org/10.1039/d1cp05928a>.
2. Sheng X, Himo F: The quantum chemical cluster approach in biocatalysis. *Acc Chem Res* 2023, 56:938–947, <https://doi.org/10.1021/acs.accounts.2c00795>.
3. Clemente CM, Capece L, Martí MA: Best Practices on QM/MM simulations of biological systems. *J Chem Inf Model* 2023, 63: 2609–2627, <https://doi.org/10.1021/acs.jcim.2c01522>.
4. Ferreira P, Fernandes PA, Ramos MJ: Modern computational methods for rational enzyme engineering. *Chem Catal* 2022, 2: 2481–2498.
5. Ray D, Das S, Raucci U: Kinetic view of enzyme catalysis from enhanced sampling QM/MM simulations. *J Chem Inf Model* 2024, 64:3953–3958, <https://doi.org/10.1021/acs.jcim.4c00475>.
6. Amaro R, Mulholland AJ: Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. *Nat Rev Chem* 2018, 2:148, <https://doi.org/10.1038/s41570-018-0148>.
7. Manathunga M, Götz AW, Merz Jr KM: Computer-aided drug design, quantum-mechanical methods for biological problem. *Curr Opin Struct Biol* 2022, 75, 102417, <https://doi.org/10.1016/j.sbi.2022.102417>. This paper reports a detailed review of the advances in the development of accurate, efficient QM methods for computer-aided drug design, emphasizing the methodological progresses in multiscale QM/MM methods and the potential impact of combining QM and ML models.
8. Kar RK: Benefits of hybrid QM/MM over traditional classical mechanics in pharmaceutical systems. *Drug Discov Today* 2023, 28:1–9, <https://doi.org/10.1016/j.drudis.2022.103374>.
9. Hawkins PCD: Conformation generation: the state of the art. *J Chem Inf Model* 2017, 57:1747–1756, <https://doi.org/10.1021/acs.jcim.7b00221>.
10. McNutt AT, Bisiriyu F, Song S, Vyas A, Hutchinson GR, Koes DR: Conformer generation for structure-based drug design: how many and how good? *J Chem Inf Model* 2023, 63:6598–6607, <https://doi.org/10.1021/acs.jcim.3c01245>.

11. Vázquez J, García R, Linares P, Luque FJ, Herrero E: On the relevance of query definition in the performance of 3D ligand-based virtual screening. *J Comput Aided Mol Des* 2024, 38:18, <https://doi.org/10.1007/s10822-024-00561-5>.
12. Poongavanam V, Wleske LHE, Pelntner S, Erdélyi M, Kihlberg J: Molecular chameleons in drug discovery. *Nat Rev Chem* 2024, 8:45–60, <https://doi.org/10.1038/s41570-023-00563-1>.
13. Raniolo S, Limongelli V: Improving small-molecule force field parameters in ligand binding studies. *Front Mol Biosci* 2021, 8, 760283, <https://doi.org/10.3389/fmolsb.2021.760283>.
14. Gürsoy O, Smiesko M: Searching for bioactive conformations of drug-like ligands with current force fields: how good are we? *J Cheminf* 2017, 9:29, <https://doi.org/10.1186/s13321-017-0216-0>.
15. Stylianakis I, Zervos N, Lii J-H, Pantazis DA, Kolocouris A: Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against couple cluster theory. *J Comput Aided Mol Des* 2023, 37:607–656, <https://doi.org/10.1007/s10822-023-00513-5>.
16. Xue B, Yang Q, Zhang Q, Wan X, Fang D, Lin X, Sun G, Gobbo G, Cao F, Mathiowitz AM, Burke BJ, Kumpf RA, Rai BK, Wood GPF, Pickard FCIV, Wang J, Zhang P, Ma J, Jiang YA, Wen S, Hou X, Zou J, Yang M: Development and comprehensive benchmark of a high-quality AMBER-consistent small molecule force field with broad chemical space coverage for molecular modeling and free energy calculation. *J Chem Theor Comput* 2024, 20:799–818, <https://doi.org/10.1021/acs.jctc.3c00920>.
17. Kaldova T, Culka M, Rulísek L, Andris E: Exhaustive mapping of the conformational space of natural dipeptides by the DFT-D3//COSMO-RS method. *J Phys Chem B* 2022, 126:5949–5958, <https://doi.org/10.1021/acs.jpcb.2c02861>.
18. Osifová Z, Kalvoda T, Galgonek J, Culka M, Vondrásek J, Bour P, Bednárová L, Andrushchenko V, Dracínský M, Rulísek L: What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments. *Chem Sci* 2023, 15:594–608, <https://doi.org/10.1039/d3sc04960d>.
19. Lodola A, Bertolini S, Biagetti M, Capacchi S, Facchinetti F, Gallo PM, Pappani A, Mor M, Pala D, Rivara S, Visentini F, Corsi M, Capelli AM: Atropisomerism and conformational equilibria: impact on PI3Kd inhibition of 2-((6-amino-9H-purin-9-yl)methyl)-5-methyl- 3-(o-tolyl)quinazolin-4(3H)-one (IC87114) and its conformationally restricted analogs. *J MedChem* 2017, 60:4304–4315, <https://doi.org/10.1021/acs.jmedchem.7b00247>.
20. Pracht P, Grimme S, Bannwarth C, Bohle F, Ehlert S, Feldmann G, Gorges J, Müller M, Neudecker T, Plett C, Spicher S, Steinbach P, Wesolowski PA, Zeller F: Crest – a program for the exploration of low-energy molecular chemical space. *J Chem Phys* 2024, 160, 114110, <https://doi.org/10.1063/5.0197592>.
21. Pracht P, Bohle F, Grimme S: Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Phys Chem Chem Phys* 2020, 22:7169–7192, <https://doi.org/10.1039/C9CP06869D>.
22. Boz E, Stein M: Accurate receptor-ligand binding free energies from fast QM conformational chemical space sampling. *Int J Mol Sci* 2021, 22:3078, <https://doi.org/10.3390/ijms22063078>.
23. Liu Z, Zubatiuk T, Roitberg A, Isayev O: Auto3D: automatic generation of the low-energy 3D structures with ANI neural network potentials. *J Chem Inf Model* 2022, 62:5373–5382, <https://doi.org/10.1021/acs.jcim.2c00817>.Conceived as an extension of the ANI model, ANI-2xt defines the algorithm encoded in Auto3D, which was developed as an efficient tool to explore the conformational space of flexible compounds and to identify the stereoconfiguration that yields the lowest-energy conformer.
24. Rai BK, Sresht V, Yang Q, Unwalla R, Tu M, Mathiowitz AM, Bakken GA: TorsionNet: a deep neural network to rapidly predict small-molecule torsional energy profiles with the accuracy of quantum mechanics. *J Chem Inf Model* 2022, 62: 785–800, <https://doi.org/10.1021/acs.jcim.1c01346>. This manuscript reports the development of a neural network model to explore the conformational space of small molecules, where the training procedure was focused on the prediction of the torsional energy rather than learning a general potential energy function.
25. Zeng J, Tao Y, Giese TJ, York DM: QDp: a quantum deep potential interaction model for drug discovery. *J Chem Theor Comput* 2023, 19:1261–1275, <https://doi.org/10.1021/acs.jctc.2c01172>.
26. Das S, Dinpazhoh L, Tanemura KA, Merz Jr KM: Rapid and automated ab initio metabolite collisional cross section prediction from SMILES input. *J Chem Inf Model* 2023, 63: 4995–5000, <https://doi.org/10.1021/acs.jcim.3c00890>.

27. Das S, Merz Jr KM: Molecular gas-phase conformational ensembles. *J Chem Inf Model* 2024, 64:749–760, <https://doi.org/10.1021/acs.jcim.3c01309>.
28. Lodola A, Mor M, Rivara S, Christov C, Tarzia G, Piomelli D, Mulholland AJ: Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling. *Chem Comm* 2008:214–216, <https://doi.org/10.1039/b714136j>.
29. Dos Santos AM, Cianni L, De Vita D, Rosini F, Leitao A, Laughton CA, Lameira J, Montanari CA: Experimental study and computational modelling of cruzain cysteina protease inhibition by dipeptidyl nitriles. *Phys Chem Chem Phys* 2018, 20:24317–24328, <https://doi.org/10.1039/c8cp0332j>.
30. Borbulevych OY, Martin RI, Westerhoff LM: The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design. *J Comput Aided Mol Des* 2021, 35:433–451, <https://doi.org/10.1007/s10822-020-00354-6>.
31. Liebschner D, Moriarty NW, Poon BK, Adams PD: In situ ligand restraints from quantum-mechanical methods. *Acta Crystallogr* 2023, D79:100–110, <https://doi.org/10.1107/S2059798323000025>.
32. Xinsheng J, Zhu T, Zhang JZH, He X: Automated fragmentation QM/MM calculation of NMR chemical shifts for protein-ligand complexes. *Front Chem* 2018, 6:150, <https://doi.org/10.3389/fchem.2018.00150>.
33. Yu Z, Li P, Merz Jr KM: Using ligand-induced protein chemical shift perturbations to determine protein-ligand structures. *Biochemistry* 2017, 56:2349–2362, <https://doi.org/10.1021/acs.biochem.7b00170>.
34. Zhang J, Kriebel CN, Wan Z, Shi M, Glaubitz C, He X: Automated fragmentation quantum mechanical calculation of 15 N and 13 C chemical shifts in a membrane protein. *J Chem Inf Model* 2023, 19:7405–7422, <https://doi.org/10.1021/acs.jcic.3c00621>. This manuscript reports the adaptation of the AF-QM/MM method to calculate the chemical shifts of membrane-embedded proteins accounting for the complexity of the environment, thus assisting the structure validation and refinement of large biomolecules.
35. Platzer G, Ptaszek AL, Böttcher J, Fuchs JE, Geist L, Braun D, McConnell DB, Konrat R, Sánchez-Murcia PA, Mayer M: Ligand 1 H NMR chemical shifts as accurate reporters for protein-ligand binding interfaces in solution. *ChemPhysChem* 2024, 25, e202300636, <https://doi.org/10.1002/cphc.202300636>.
36. Ryde U, Söderhjelm P: Ligand-binding affinity estimates supported by quantum-mechanical methods. *Chem Rev* 2016, 116:5520–5566, <https://doi.org/10.1021/acs.chemrev.5b00630>.
37. Cavasotto CN, Aucar MG: High-throughput docking using quantum mechanical scoring. *Front Chem* 2020, 8:246, <https://doi.org/10.3389/fchem.2020.00246>.
38. Pecina A, Fanfrlík J, Lepsík M, Rezáč J: SQM2.20: semi-empirical quantum-mechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes. *Nat Commun* 2024, 15:117, <https://doi.org/10.1038/s41467-024-45431-8>. This is a contemporary study that reports a semiempirical QM computational scheme SQM2.20. This method outperforms other scoring methods. Reaching a level of accuracy similar to much more expensive DFT calculations, the consistent performance for a variety of macro-molecular targets supports the application to lead optimization studies.
39. Pecina A, Eyrilmez SM, Köprülüoglu C, Miriyala VM, Lepsík M, Fanfrlík J, Rezáč J, Hobza P: SQM/COSMO Scoring Function: reliable quantum-mechanical tool for sampling and ranking in structure-based drug design. *Chempluschem* 2020, 85: 2362–2371, <https://doi.org/10.1002/cplu.202000120>.
40. Guareschi R, Lukac I, Hilbert IH, Zucotto F: SophosQM: accurate binding affinity prediction in compound optimization. *ACS Omega* 2023, 8:15083–15098, <https://doi.org/10.1021/acsomega.2c08132>.
41. Yuan Z, Chen X, Fan S, Chang L, Chu L, Zhang Y, Wang J, Li S, Xie J, Hu J, Miao R, Zhu L, Zhao Z, Li H, Li S: Binding free energy calculation based on the fragment molecular orbital method and its application in designing novel SHP-2 allosteric inhibitors. *Int J Mol Sci* 2024, 25:671, <https://doi.org/10.3390/ijms25010671>.
42. Szél V, Zsidó BZ, Jeszenöi N, Hetényi C: Target-ligand binding affinity from single point enthalpy calculation and elemental composition. *Phys Chem Chem Phys* 2023, 25:31714–31725, <https://doi.org/10.1039/D3CP04483A>.
43. Hudson PS, Aviat F, Meana-Pañeda R, Warrensford L, Pollard BC, Prasad S, Jones MR, Woodcock HL, Brooks BR: Obtaining QM/MM free energies in the SAMPL8 drugs of abuse challenge: indirect approaches. *J Comput Aided Mol Des* 2022, 36:263–277, <https://doi.org/10.1007/s10822-022-00443-8>.
44. Nawrocki G, Leontyev I, Sakipov S, Darkhovskiy M, Kurnikov I, Pereyaslavets L, Kamath G, Voronina E, Butin O, Illarianov A, Olevanov M, Kostikov A, Ivahnenko I, Patel DS, Sankaranarayanan KRS, Kurnikova MG, Lock C, Crooks GE, Levitt M, Korngerg RD, Fain B: Protein-ligand binding free-energy calculations

with ARROW - a purely first-principles parametrized polarizable force field. *J Chem Theor Comput* 2022, 18:7751–7763, <https://doi.org/10.1021/acs.jctc.2c00930>. This manuscript reports the definition of a QM-fitted, physics-based polarizable force field aimed to provide an accurate description of intermolecular interactions, achieving almost chemical accuracy in simulations of solvation free energies and ligand-target binding free energies.

- 45. Illarianov A, Sakipov S, Pereyaslavets L, Kurnikov IV, Kamath G, Butin O, Voronina E, Ivahnenko I, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Cherniavskiy YK, Lock C, Greenslade S, Sankaranarayanan KRS, Kurnikova MG, Potoff J, Kornberg RD, Fain B: Combining force fields and neural networks for an accurate representation of chemically diverse molecular interactions. *J Am Chem Soc* 2023, 145: 23620–23629, <https://doi.org/10.1021/jacs.3c07628>.
- 46. González D, Macaya L, Castillo-Orellana C, Verstraelen T, Vogt-Geisse S, Vöhringer-Martínez E: Nonbonded force field parameters from minimal basis iterative stockholder partitioning of the molecular electron density improve CB7 host–guest affinity predictions. *J Chem Inf Model* 2022, 62: 4162–4174, <https://doi.org/10.1021/acs.jcim.2c00316>.
- 47. Macaya L, González D, Vöhringer-Martínez E: Nonbonded force field parameters from MBIS partitioning of the molecular electron density improve binding affinity predictions of the T4-lysozyme double mutant. *J Chem Inf Model* 2024, 64: 3269–3277, <https://doi.org/10.1021/acs.jcim.3c01912>.
- 48. Rizzi A, Carloni P, Parrinello M: Free energies at QM accuracy from force fields via multimap targeted estimation. *Proc Natl Acad Sci USA* 2023, 120, e2304308120, <https://doi.org/10.1073/pnas.2304308120>.
- 49. Isert C, Atz K, Riniker S, Schneider G: Exploring protein-ligand binding affinity prediction with electron density-based geometric deep-learning. *RSC Adv* 2024, 14:4492, <https://doi.org/10.1039/d3ra08650j>.
- 50. Copeland RA: Evolution of the drug–target residence time model. *Expert Opin Drug Discov* 2021, 16:1441–1451, <https://doi.org/10.1080/17460441.2021.1948997>.
- 51. Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P: Enhanced-sampling simulations for the estimation of ligand binding kinetics: current status and perspective. *Front Mol Biosci* 2022, 9, 899895, <https://doi.org/10.3389/fmolsb.2022.899805>. An interesting manuscript that reports the advances made in molecular simulation methodologies for the prediction of (un)binding kinetics. It includes a discussion about the limitations of force fields, and the potential impact of QM/MM and QML methods in the upcoming era of exascale computing.
- 52. Ojha AA, Votapka LW, Amaro RE: QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through milestone simulations. *Chem Sci* 2023, 14:13159–13175, <https://doi.org/10.1039/D3SC04195F>.
- 53. Vaas S, Zimmermann MO, Schollmeyer D, Stahlecker J, Engelhardt MU, Rheinganz J, Droftleff B, Olfert M, Lämmerhofer M, Kramer M, Stehle T, Boeckler FM: Principles and applications of CF 2 X moieties as unconventional halogen bond donors in medicinal chemistry, chemical biology and drug discovery. *J Med Chem* 2023, 66: 10202–10225, <https://doi.org/10.1021/acs.jmedchem.3c00634>.
- 54. Li J, Zhou L, Han Z, Wu L, Zhang J, Zhu W, Xu Z: Impact of halogen bonds on protein–peptide binding and protein structural stability revealed by computational approaches. *J Med Chem* 2024, 67:4782, <https://doi.org/10.1021/acs.jmedchem.3c02359>.
- 55. Xiao Y, Woods RJ: Protein–ligand CH–p interactions: structural informatics, energy function development, and docking implementation. *J Chem Theor Comput* 2023, 19:5503–5515, <https://doi.org/10.1021/acs.jctc.3c00300>.
- 56. Krone MW, Travis CR, Lee GY, Eckvahl HJ, Houk KN, Waters ML: More than p–p–p stacking: contribution of amide–p and CH–p interactions to crotonyllysine binding by the AF9 YEATS domain. *J Am Chem Soc* 2020, 142: 17048–17056, <https://doi.org/10.1021/jacs.0c06568>.
- 57. Togo T, Tram L, Denton LG, ElHilali-Pollard X, Gu J, Jiang J, Liu C, Zhao Y, Zhao Y, Zheng Y, Zheng Y, Yang J, Fan P, Arkin MR, Härmä H, Sun D, Canan SS, Wheeler SE, Renslo AR: Systematic study of heteroarene stacking using a congeneric set of molecular glues for procaspase-6. *J Med Chem* 2023, 66:9784–9796, <https://doi.org/10.1021/acs.jmedchem.3c00590>.
- 58. Gervasoni S, Spencer J, Hinchliffe P, Pedretti A, Vairoletti F, Mahler G, Mulholland AJ: A multiscale approach to predict the binding mode of metallo beta-lactamase inhibitors. *Proteins* 2022, 90:372–384, <https://doi.org/10.1002/prot.26227>.

59. Bonatto V, Batista PHJ, Cianni L, De Vita D, Silva DG, Cedron R, Tezuka DY, De Albuquerque S, Moraes CB, Franco CH, Lameira J, Leitao A, Montanari CA: On the intrinsic reactivity of highly potent trypanocidal cruzain inhibitors. *RSC Med Chem* 2020, 11:1275–1284, <https://doi.org/10.1039/d0md00097c>.
60. Gorgulla C, Jayaraj A, Fackeldey K, Arthanari H: Emerging frontiers in virtual drug discovery: from quantum mechanical methods to deep learning approaches. *Curr Opin Chem Biol* 2022, 69, 102156, <https://doi.org/10.1016/j.cbpa.2022.102156>.
61. Gusarov S, Stoyanov SR: Cosmo-RS-based descriptors for the machine learning-enabled screening of nucleotide analogue drugs against SARS-CoV-2. *J Phys Chem Lett* 2020, 11: 9408–9414, <https://doi.org/10.1021/acs.jpclett.0c02836>.
62. Vázquez J, Deplano A, Herrero A, Gibert E, Herrero E, Luque FJ: Assessing the performance of mixed strategies to combine lipophilic molecular similarity and docking in virtual screening. *J Chem Inf Model* 2020, 60:4231–4245, <https://doi.org/10.1021/acs.jcim.9b01191>.
63. Vázquez J, Ginex T, Herrero A, Morisseau C, Hammock BD, Luque FJ: Screening and biological evaluation of soluble Epoxide Hydrolase inhibitors: assessing the role of hydrophobicity in the pharmacophore-guided search of novel hits. *J Chem Inf Model* 2023, 63:3209–3225, <https://doi.org/10.1021/acs.jcim.3c00301>.
64. Monteleone S, Fedorov DG, Townsend-Nicholson A, Southey M, Bodkin M, Heifetz A: Hotspot identification and drug design of protein-protein interaction modulators using the fragment molecular orbital method. *J Chem Inf Model* 2022, 62: 3784–3799, <https://doi.org/10.1021/acs.jcim.2c00457>.
65. Losev TV, Gerasimov IS, Panova MV, Lisov AA, Abdyusheva YR, Rusina PV, Zaletskaya E, Stroganov OV, Medvedev MG, Novikov FN: Quantum mechanical-cluster approach to solve the bioisosteric replacement problem in drug design. *J Chem Inf Model* 2023, 63:1239–1248, <https://doi.org/10.1021/acs.jcim.2c01212>.
66. Argikar U, Blatter M, Bednarczyk D, Chen Z, Cho YS, Doré M, Dumouchel JL, Ho S, Hoegenauer K, Kawanami T, Mathieu S, Meredith E, Möbitz H, Murphy SK, Parthasarathy S, Soldermann CP, Santos J, Silver S, Skolnik S, Stojanovic A: Paradoxical increase of permeability and lipophilicity with the increasing topological polar surface area within a series of PRMT5 inhibitors. *J Med Chem* 2022, 65:12386–12402, <https://doi.org/10.1021/acs.jmedchem.2c01068>.
67. Isert C, Atz K, Jiménez-Luna J, Schneider G: QMugs, quantum mechanical properties of drug-like molecules. *Sci Data* 2022, 9:273, <https://doi.org/10.1038/s41597-022-01390-7>. By compiling QM properties of more than 665,000 molecules, this manuscript aims to facilitate the development of ML models to gain insight into the relationships between molecular structure and biological activity.
68. Lim MA, Yang S, Mai H, Cheng AC: Exploring deep learning of quantum chemical properties for absorption, distribution, metabolism, and excretion predictions. *J Chem Inf Model* 2022, 62:6336–6341, <https://doi.org/10.1021/acs.jcim.2c00245>.
69. Isert C, Kromann JC, Stiefl N, Schneider G, Lewis RA: Machine learning for fast, quantum mechanics-based approximation of drug lipophilicity. *ACS Omega* 2023, 8:2046–2056, <https://doi.org/10.1021/acsomega.2c05607>.
70. Heid E, Greenman KP, Chung Y, Li SC, Graff DE, Vermeire FH, Wu H, Green WH, McGill CJ: Chemprop: a machine learning package for chemical property prediction. *J Chem Inf Model* 2024, 64:9–17, <https://doi.org/10.1021/acs.jcim.3c01250>.
71. Zhao H: The science and art of structure-based virtual screening. *ACS Med Chem Lett* 2024, 15:436–440, <https://doi.org/10.1021/acsmedchemlett.4c00093>.
72. Lyu J, Irwin JJ, Schochet BK: Modeling the expansion of virtual screening libraries. *Nat Chem Biol* 2023, 19:712–718, <https://doi.org/10.1038/s41589-022-01234-w>.
73. Kuan J, Radaeva M, Avenido A, Cherkasov A, Gentile F: Keeping pace with the explosive growth of chemical libraries with structure-based virtual screening. *WIREs Comput Mol Sci* 2023, 13, e1678, <https://doi.org/10.1002/wcms.1678>.
74. Acharya A, Agarwal R, Baker MB, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen SY, Coates L, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller DW, Kovalevsky A, Larkin J, Lawrence TJ, LeGrand S, Liu S-H, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers DM, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L: Supercomputer-based ensemble docking

drug discovery pipeline with application to Covid-19. *J Chem Inf Model* 2020, 60:5832–5852, <https://doi.org/10.1021/acs.jcim.0c01010>.

75. Raghavan B, Paulikat M, Ahmad K, Callea L, Rizzi A, Ippoliti E, Mandelli D, Bonati L, De Vivo M, Carloni P: Drug design in the exascale era: a perspective from massively parallel QM/MM simulations. *J Chem Inf Model* 2023, 63:3647–3658, <https://doi.org/10.1021/acs.jcim.3c00557>.
76. Santagati R, Aspuru-Guzik A, Babbush R, Degroote M, Gonzalez L, Kyoseva E, Moll N, Oppel M, Parrish RM, Rubin NC, Streif M, Tautermann CS, Weiss H, Wiebe N, Utschig-Utschig C: Drug design on quantum computers. *Nat Phys* 2024, 20:549–557, <https://doi.org/10.1038/s41567-024-02411-5>.
77. Pyrkov A, Aliper A, Bezrukov D, Lin Y-C, Polykovskiy D, Kamya P, Ren F, Zhavoronkov A: Quantum computing for near-term applications in generative chemistry and drug discovery. *Drug Discov Today* 2023, 28:1–12, <https://doi.org/10.1016/j.drudis.2023.103675>.